首页> 外文会议>SPIE Conference on Solar Physics and Space Weather Instrumentation >Detector and imaging systems for the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument
【24h】

Detector and imaging systems for the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument

机译:用于伽马射线成像仪/太阳能耀斑(夹具)仪器的伽马射线成像器/偏振仪的探测器和成像系统

获取原文

摘要

Hard X-ray and gamma-ray emission during solar flares encode information about electron/ion dynamics and provide a proxy to deduce solar atmospheric parameters. Enhanced imaging, spectroscopy and polarimetry of HXR/gamma-ray flare emissions over ~20 keV to ≥10MeV is needed to study particle transport; the Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS) instrument is designed to meet these goals. GRIPS' key technological improvements over the current solar state of the art in HXR/gamma-ray energies (RHESSI) include 3D position-sensitive germanium detectors (3D-GeDs) and a single-grid modulation collimator, the Multi-Pitch Rotating Modulator (MPRM). The 3D-GeDs allow GRIPS to reconstruct Compton-scatter tracks of energy deposition, providing enhanced background reduction and polarization measurements. Each of GRIPS' sixteen detectors has 298 electrode strips, each of which has dedicated ASIC/FPGA electronics. In GRIPS' energy range, indirect Fourier imaging provides higher resolution than focusing optics or Compton imaging techniques. The MPRM grid-imaging system has a single-grid design which provides 2x the throughput of a bigrid imaging system like RHESSI. Quasi-continuous resolution from 12.5 - 162 arcsecs is achieved by varying the grid pitch between 1 - 13mm. This spatial resolution will be capable of imaging the separate footpoints in a variety of flare sizes. In comparison, RHESSI's minimum 35 arcsec resolution at the same energy makes footpoints resolvable in only the largest flares. We discuss GRIPS' science goals, the instrument overall, and recent developments in GRIPS' detector and imaging systems. GRIPS is scheduled for an engineering flight from Fort Sumner in September 2014,followed by two long-duration balloon flights from Antarctica in 2015/16.
机译:太阳能光泽期间的硬X射线和伽马射线发射编码有关电子/离子动力学的信息,并提供代理推导太阳大气参数。研究颗粒运输需要增强的HXR /伽马射线爆发排放的增强的成像,光谱学和HOXR /伽马射线光晕排放量超过≥10mev;太阳能耀斑(夹具)仪器的伽马射线成像器/偏振仪旨在满足这些目标。 HXR / Gamma射线能量(Rheashi)的当前太阳能状态上的夹具的关键技术改进包括3D位置敏感的锗探测器(3D-GED)和单栅调制准直器,多音高旋转调制器( MPRM)。 3D GED允许握把重建能量沉积的康顿散射轨道,提供增强的背景减少和极化测量。每个夹具的十六个探测器具有298个电极条,每个电极带具有专用的ASIC / FPGA电子器件。在握把的能量范围内,间接傅里叶成像提供比聚焦光学或康普顿成像技术更高的分辨率。 MPRM网格成像系统具有单网设计,它提供了rhesi等BigRID成像系统的2倍。通过改变1至13mm的网格间距来实现从12.5 - 162弧形的准连续分辨率。这种空间分辨率将能够在各种闪光尺寸中对单独的脚踏点进行成像。相比之下,Rhesei在同一能源的最小35个ArcSec分辨率使得只有最大的耀斑可在速度中解析。我们讨论夹具的科学目标,整体仪器和夹具探测器和成像系统的最新发展。 2014年9月,从堡垒Sumner的工程飞行计划,随后是2015/16年从南极洲的两个长时间气球航班。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号