首页> 外文会议>Annual ORNL Biomedical Science Engineering Conference: Exploring the Intersections of Interdisciplinary Biomedical Research >Controlled microfluidic production of alginate beads for in situ encapsulation of microbes
【24h】

Controlled microfluidic production of alginate beads for in situ encapsulation of microbes

机译:用于原位封装微生物的藻酸盐珠的控制微流体生产

获取原文

摘要

The development and refinement of a microfluidic-based alginate bead generator system for bacterial encapsulation is presented. The resulting microgels have application for the encapsulation of single cells, and can allow for small scale, clonal expansion of thousands of isolated cells in parallel. PDMS based microfluidic chips were fabricated using conventional lithography techniques to produce both externally gelled and directly gelled alginate microspheres using a controlled, water-in-oil emulsion system. The production of directly gelled beads, formed by the in-chip mixing of aqueous alginate and calcium chloride solutions dispersed within an organic carrier flowstream is qualitatively compared to a system, which produces beads and relies on diffusion of a crosslinking agent from the carrier fluid to cause gelation (external gelation). While the direct gelation scheme allows the use of biocompatible oils as the organic carrier, it also has a detrimental effect on device stability often resulting in clogging and gel-streaming at the microfluidic interface of these solutions. A design for the continuous production of directly gelled beads was evaluated in terms of the threshold flow conditions and reagent concentrations that did not result in clogging or streaming. Monodisperse alginate microgels of 30μm diameter were produced at frequencies of over 500 beads per second. The beads could be completely dispersed into aqueous media using an off-chip washing protocol to remove the organic phase. The microgels effectively encapsulated individual or small numbers of GFP-expressing Escherichia. coli, which could be subsequently clonally expanded. The described microfluidic platform is a robust front-end sample preparation technology that shows strong potential for use in drug delivery systems, biosensors, and other cell-based microcompartmentalization applications. The co-culturing of microbial colonies in a large population of alginate beads will allow for functional sorting and genetic analyses at the single cell level.
机译:介绍了用于细菌封装的微流体基藻酸盐珠发电机系统的开发和改进。得到的微凝胶具有用于单细胞的封装施用,并且可以允许小规模,并联成千上万的分离细胞的克隆膨胀。使用常规的光刻技术制造基于PDMS的微流体芯片,以使用受控的水乳液系统生产外部凝胶化和直接凝胶的藻酸盐微球。由藻酸盐水上含量和分散在有机载体流动流中的片上混合形成的直接凝胶珠的产生与产生珠子的系统进行定性,并依赖于来自载流体的交联剂的扩散引起凝胶化(外部凝胶化)。虽然直接凝胶化方案允许使用生物相容性油作为有机载体,但它对这些溶液的微流体界面处导致堵塞和凝胶流的装置稳定性的不利影响。在阈值流动条件和试剂浓度方面评价用于连续生产直接凝胶珠的设计,所述试剂浓度不会导致堵塞或流动。单分散的藻酸盐微凝胶,直径为30μm,在每秒500多个珠子的频率下产生。使用片外洗涤方案可以将珠子完全分散到水性介质中以除去有机相。微凝胶有效地包封了表达的个体或少量的Escherichia。大肠杆菌,随后可以克隆地扩展。所描述的微流体平台是一种强大的前端样品制备技术,表现出用于药物递送系统,生物传感器和其他基于细胞的微量组分化应用的强大潜力。在大量藻酸盐珠粒中的微生物菌落的共培养将允许在单细胞水平上进行功能分选和遗传分析。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号