首页> 外文会议>Symposium on Nanophase and Nanocomposite Materials >Engineered Nanocomposites for Solid Oxide Fuel Cells By Colloidal Crystal Templating
【24h】

Engineered Nanocomposites for Solid Oxide Fuel Cells By Colloidal Crystal Templating

机译:用于通过胶体晶体模板的固用于固体氧化物燃料电池的工程化纳米复合材料

获取原文

摘要

Colloidal crystals exhibit three-dimensionally (3D) periodic and porous structures that are increasingly finding use as templates for the formation of 3D ordered macroporous (3DOM) solids [1, 2]. The use of 3DOM materials as photonic band gap materials has attracted considerable interest over the past decade [3-6]. More recently their large surface to volume ratios have been exploited for new applications including chemical sensing, photocatalysis, chromatography and renewable energy [7-10]. 3DOM solids can be described as two interpenetrating networks; usually a solid material and air, in the approximate ratio of 26:74% if the original template was close packed. The dimensions of the minor and to some extent the major phase can be controlled by altering the sphere diameter used in template formation contain two interpenetrating networks. Thus 3DOM solids are ideal hosts or the formation of ordered composites for applications in which interfaces play an important role in device performance. In our current work the use of 3DOM solids to enhance the performance of electrodes in solid oxide fuel cells (SOFCs) is under investigation. SOFCs are electrochemical devices that convert chemical energy to electrical energy at high efficiencies with, depending on the choice of fuel, low (hydrocarbons) or zero (hydrogen) CO_2 emissions. Considerable effort has been devoted to the development of materials for SOFCs and there are many excellent review articles detailing the latest developments [11-19]. In general an SOFC consists of an oxide ion-conducting electrolyte, typically yttria stabilized zirconia (YSZ), a fuel electrode (Ni-YSZ composite) and an air electrode (La_(1-x)Sr_xMO_(3-d), M = Co, Mn, Fe). In order to enhance SOFC performance several parameters require optimization. For the cathode, the electrochemical processes occurring have to be considered, these are: the catalytic dissociation of O_2 to O~(2-); the transport of the ionic species to the electrolyte surface and the incorporation of the ionic species into the electrolyte (charge transfer). A further function of the cathode is that it acts as a current collector for the cell, and hence is required to have high electronic conductivity.
机译:胶体晶体表现出三维(3D)周期性和多孔结构,其越来越多地发现用作形成3D有序大孔(3Dom)固体的模板[1,2]。使用3Dom材料作为光子带隙材料的应用在过去十年中引起了相当大的兴趣[3-6]。最近,它们的大表面对体积比已经利用了新的应用,包括化学传感,光催化,色谱和可再生能量[7-10]。 3编辑固体可以描述为两个互穿网络;通常是固体材料和空气,如果原始模板填充,则近似比例为26:74%。通过改变模板形成中使用的球体直径来控制微阶段的次要尺寸可以控制两个互穿网络。因此,3Dom固体是理想的主机或有序复合材料的形成,其中界面在设备性能中发挥着重要作用。在我们目前的工作中,使用3Dom固体来增强固体氧化物燃料电池(SOFC)中的电极的性能。根据燃料,低(烃)或零(氢)CO_2排放的选择,SOFC是将化学能量转换为高效的电能与电能转换为电能。相当大的努力已经致力于开发SOFC的材料,并且有许多优秀的综述文章详细说明了最新发展[11-19]。在一般的SOFC包括氧离子传导电解质,通常是氧化钇稳定的氧化锆(YSZ),燃料电极(镍-YSZ复合材料)和空气电极(了La_(1-X)Sr_xMO_(3-d)中,M = CO,Mn,Fe)。为了增强SOFC性能,几个参数需要优化。对于阴极,必须考虑发生的电化学方法,其中:O_2至O〜(2-)的催化解离;离子物质的传送到电解质表面和离子物质的掺入电解质(电荷转移)。阴极的另一个功能是它用作电池的集电器,因此需要具有高电子导电性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号