首页> 外文会议>Rocky Mountain (RM) Oil and Gas Technology Symposium >A Composite Determination of Mechanical Rock Properties for Stimulation Design (What To Do When You Don’t Have a Sonic Log)
【24h】

A Composite Determination of Mechanical Rock Properties for Stimulation Design (What To Do When You Don’t Have a Sonic Log)

机译:刺激设计机械岩石性能的综合测定(当您没有声音日志时该做什么)

获取原文

摘要

In the Rocky Mountain region of the US, nearly every well is hydraulic fracture stimulated to produce commercial volumes of oil and gas. The starting point for designing these treatments is an understanding of the in-situ stress profile. To calculate the in-situ stress profile, one must have an understanding of the mechanical rock properties and the pore pressure variations throughout the wellbore. Pore pressure can be measured in the permeable zones and in-situ stress can be calculated by the modeling of closure stress from pre-fracture pressure testing. But these tests are rarely performed in the nonreservoir rocks above and below the fracture stimulation treatment. The challenge for the stimulation design engineer is to determine the mechanical rock properties in and around the treatment interval. Calculating in-situ stress with the uniaxial strain equation requires the knowledge of Poisson’s ratio, Young’s modulus, pore pressure, and overburden pressure. Classically, the static Poisson’s ratio (PR) and Young’s modulus (YMS) are calculated by using the results from a dipole sonic log. However, in most fields, less than 1% of the wells requiring stimulation have dipole sonic data. In the absence of dipole sonic information, conventional wireline log data can be used to quite effectively calculate mechanical rock properties by using basic petrophysical relationships and artificial neural networks. The composite method to determine mechanical rock properties uses five methods to estimate the compressional slowness (DTC), seven methods to estimate shear slowness (DTS), eight methods to estimate PR, and and nine methods to determine YMS. The composite model PR and YMS are error minimized by a weighted averaging technique that honors the most reliable correlations. The composite modeled PR and YMS values are then used as inputs for a continuous calculation of the minimum horizontal stress (Shmin). The validation of the new composite model PR and YMS was confirmed in three ways. First, the composite model results are compared to the values determined in the lab from actual core samples. Second, the composite model results were compared to calculations using measured DTC and DTS in wells where dipole sonic tool measurements were recorded across a field in Wyoming. Finally, the composite model results were validated by using stimulation treatment pressure history matches on the Pinedale anticline in southwestern Wyoming. The goal of the composite model is to provide a robust rock property solution with or without sonic log data to eliminate the mechanical rock properties as a variable in fracture stimulation treatment design and history matching.
机译:在美国的落基山地区,几乎每一个井是水力压裂刺激产生的石油和天然气的商业卷。设计这些治疗方法的出发点是地应力分布的了解。为了计算原地应力轮廓,一个必须具有机械岩石特性和整个井孔中的孔隙压力的变化的理解。孔隙压力可以在渗透区进行测量和原位应力可以通过闭合应力的从预破裂压力试验建模来计算。但是,这些试验在nonreservoir岩石上方和下方的骨折刺激治疗很少进行。为刺激设计工程师所面临的挑战是确定和周围的治疗间隔机械岩石性质。计算原地应力与单轴应变方程需要的泊松比,杨氏模量,孔隙压力,和上覆压力的知识。经典地,静态泊松比(PR)和杨氏模量(YMS)通过使用从一个偶极声波测井的结果计算。然而,在大多数领域,需要刺激孔的小于1%的具有偶极声波数据。在不存在的偶极声波信息,常规电缆测井数据可以通过使用基本岩石物理关系和人工神经网络被用于非常有效地计算机械岩石性质。确定机械岩石特性的复合方法使用五种方法来估计纵波慢度(DTC),七种方法来估计的横波慢度(DTS),八种方法估计PR,和九种方法来确定YMS。复合模型PR和YMS是错误由加权平均技术,荣誉最可靠的相关性最小化。复合模拟PR和YMS值随后被用作输入,用于最小水平应力(Shmin)的一个连续计算。新型复合模式PR和YMS的验证被确认在三个方面。首先,将复合模型的结果进行比较,以在从实际岩心样品在实验室确定的值。二,复合模型结果相比于偶极声波工具测量在怀俄明记录跨字段使用测量的DTC DTS在井的计算和。最后,复合模型结果使用在怀俄明州西南部的派恩代尔背斜刺激治疗压力历史匹配验证。复合模型的目的是提供一种坚固的岩石性质溶液具有或不具有声波测井数据,以消除机械岩石性质如在压裂处理的设计和历史匹配的变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号