首页> 外文会议>SPE Latin American and Caribbean Petroleum Engineering Conference >A Material Balance Equation for Stress-Sensitive Shale Gas Condensate Reservoirs
【24h】

A Material Balance Equation for Stress-Sensitive Shale Gas Condensate Reservoirs

机译:应力敏感页岩气体冷凝水储层的材料平衡方程

获取原文

摘要

During the last few years, production of liquid hydrocarbons has been reported from the gas-condensate window of the Eagle Ford, Barnett, Niobrara and Marcellus shale plays in the US. This paper presents a new Material Balance Equation (MBE) for estimation of Original Gas in Place (OGIP) and Original Condensate in Place (OCIP) in shale gas condensate reservoirs. This material balance methodology allows estimating the critical time for implementing gas injection in those cases where condensate buildup represents a problem. Additionally, the proposed MBE considers the effects of free, adsorbed and dissolved gas condensate production, and also takes into-account the stress-dependency of porosity and permeability. An extension of the methodology is implemented for estimating the optimum time for hydraulically re-fracturing shale condensate reservoirs. The new MBE applies to shale gas condensate reservoirs by incorporating a two-phase gas deviation factor (Z2) and total cumulative gas production (G_(pt)) that includes both gas and condensate. If a crossplot of P/Z2 (pressure/Z2) vs. G_(pt) is prepared for a conventional gas condensate reservoir, a single straight line is obtained. However, when the single-phase gas compressibility factor (Z) is used, a deviation from the linear behavior is observed once the reservoir pressure falls below the gas dew-point. This methodology is applied in this study to unconventional shale gas condensate. Since there are three characteristic stages of production in a shale gas reservoir (production of free, adsorbed and dissolved gas), the location of the aforementioned deviation will provide a hint of the production stage that will be affected by condensate buildup. For example, if the deviation point is located in the region where production of free gas is predominant, then the production due to desorption mechanisms will be negatively impacted because condensation will have already occurred in the reservoir, resulting on reduction of effective permeability to gas. This methodology allows then estimating the critical time for implementing gas injection on the basis of the total cumulative gas production. Results are presented as crossplots of 1) P/Z2 vs. G_(pt), 2) G_(pt) vs. time and 3) gas rate vs. time. It is concluded that estimation of the critical time for implementing gas injection is useful for improving the performance of those shale gas condensate reservoirs where condensate buildup represents a threat that can negatively impact the gas production rate.
机译:在过去的几年中,鹰油福特,Barnett,Niobrara和Marcellus Shale在美国的Garnett,Niobrara和Marcellus Shale扮演中的Gas-Condensate窗口中据报道了液态烃的生产。本文介绍了一种新的材料平衡方程(MBE),用于估计原始气体(OGIP)和原始冷凝物在页岩气凝块储存器中的原始冷凝物(OgIP)。该材料平衡方法允许估计在冷凝土累积代表问题的那些情况下实现气体喷射的关键时间。另外,所提出的MBE考虑自由,吸附和溶解气体缩合物的效果,并考虑孔隙率和渗透性的应力依赖性。实施方法的延伸,用于估计液压重新压裂页岩冷凝物储层的最佳时间。新的MBE通过掺入包括气体和冷凝物的两相气体偏差因子(Z2)和总累积气体产生(G_(PT))来适用于页岩气凝胶储存器。如果为常规气体冷凝水储存器制备了P / Z2(压力/ Z2)与G_(PT)的交联剂,则获得单个直线。然而,当使用单相气体可压缩因子(Z)时,一旦储层压力低于气体露点,就观察到与线性行为的偏差。该方法应用于本研究以非传统的页岩气凝聚物。由于页岩气储存器中存在三个特征性的生产阶段(自由,吸附和溶解气体的生产),所以上述偏差的位置将提供一丝产生级的生产阶段,该含量将受到冷凝水堆积的影响。例如,如果偏差点位于游离气体的生产是主要的区域中,那么由于解吸机构导致的生产将受到负面影响,因为冷凝将在储层中已经发生冷凝,导致降低对气体的有效渗透性。该方法允许基于总累积气体生产来估计用于实现气体喷射的关键时间。结果呈现为1)p / z2与g_(pt),2)g_(pt)与时间和3)气速与时间的十字点。得出结论,实施气体注射的关键时间的估计可用于改善那些凝析油覆盖物代表可能对气体生产率产生负面影响的威胁的那些页岩气凝胶储存器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号