首页> 外文会议>SPE Latin American and Caribbean Petroleum Engineering Conference >A New Stimulation Method to Significantly Improve Hydrocarbon Recovery Using Temporary Beneficial Changes in Stress Anisotropy
【24h】

A New Stimulation Method to Significantly Improve Hydrocarbon Recovery Using Temporary Beneficial Changes in Stress Anisotropy

机译:一种新的刺激方法,以利用应激各向异性临时有益变化显着改善烃恢复

获取原文

摘要

As a result of the creation of a hydraulic fracture, transient geomechanics forces are exerted on the formation, which modify the stress landscape near the wellbore and the fracture plane. It has been observed that the potential exists for temporary reversal in the minimum stress direction, enabling a brief time interval in which a second hydraulic fracture can be created in a completely different direction. This provides hydraulic fracturing connectivity to previously unattainable locations in the formation, which can significantly improve initial hydrocarbon production and economic ultimate recovery from the formation. This paper presents a computational validation of this multioriented hydraulic fracturing (MOHF) process. A unique transient 3D computational geomechanic fracture simulator was developed to perform this study, as traditional hydraulic fracture simulations are derived using static formation properties and steady-state assumptions. The new model incorporates cohesive zone elements to represent the fracture plane and friction elements to account for plastic energy storage of the multiple formation rock layers in the model. Time lapse stress fields show distinct windows of opportunity wherein new fractures can be influenced to extend in alternate directions. This new stimulation method enhances the state-of-the-art in hydraulic fracturing. However, a deeper understanding of the transient geomechanic response in the treatment area is necessary to successfully design and perform the stimulation operation. Unfortunately, it also creates new complications with respect to industry standard hydraulic fracture models being incapable of modeling the transient response of the system. Furthermore, the availability of data related to the dynamic behavior of rocks is limited, and unique testing equipment and procedures must be developed to obtain such data.
机译:由于液压断裂的产生,瞬态地质力学力施加在地层上,这改变了井筒附近的压力景观和裂缝平面。已经观察到,在最小应力方向上临时反转存在潜力,使得可以在其上以完全不同的方向产生第二液压骨折的短暂时间间隔。这为液压压裂连通性提供了与形成的先前无法实现的位置,这可以显着改善从地层中的初始碳氢化合物产生和经济终极恢复。本文介绍了这种多过多过液压压裂(MOHF)过程的计算验证。开发了一种独特的瞬态3D计算地质力骨折模拟器以进行这项研究,因为传统的液压骨折模拟使用静态形成性能和稳态假设来得出。新模型包括粘性区域元素,以表示裂缝平面和摩擦元件,以考虑模型中多层岩层的塑料储存。时间流逝应力场显示出不同的机会窗户,其中可以影响新的裂缝以在交替方向上延伸。这种新的刺激方法提高了液压压裂的最先进。然而,需要更深入地理解治疗区域中的瞬态地理响应,以成功设计和执行刺激操作。不幸的是,它还为行业标准液压骨折模型创造了新的并发症,无法对系统的瞬态响应进行建模。此外,与岩石的动态行为有限的数据的可用性是有限的,并且必须开发独特的测试设备和程序以获得这些数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号