首页> 外文会议>SPE Annual Technical Conference and Exhibition >Quantifying the Impacts of Stern and Diffuse Layer Polarization onMulti-Frequency Dielectric Permittivity and Electrical Conductivity ofRock-Fluid Systems
【24h】

Quantifying the Impacts of Stern and Diffuse Layer Polarization onMulti-Frequency Dielectric Permittivity and Electrical Conductivity ofRock-Fluid Systems

机译:量化船尾和漫射层极化的影响施加频率介电常数和电导率的血液系统

获取原文

摘要

A thorough understanding of the interplay between polarization mechanisms is crucial for interpretation ofelectrical measurements because sub-MHz electrical measurements in sedimentary rocks are dominated byinterfacial polarization mechanisms.However,rock-physics models oversimplify pore-network geometryand the interaction of electric double layers(EDL)pertaining to adjacent grains.The impact of thesesimplifications on the assessment of petrophysical properties,such as hydrocarbon reserves,is difficult toquantify and often unknown.Numerical algorithms present the ideal framework to characterize the electricalresponse of sedimentary rocks,circumventing the limitations intrinsic to rock-physics models.Our recentlydeveloped algorithm simulates the interactions of electric fields with the ions in solution.However,amodel for the polarization mechanism associated with the Stern layer has not been developed.The sub-kHz permittivity enhancement in sedimentary rocks is dominated by Stern layer polarization.Therefore,theobjective of this paper is to develop a numerical simulation framework capable of quantifying the influenceof Stern-and diffuse-layer polarization,temperature,ion concentration,and pore-network geometry onmulti-frequency complex electrical measurements.We developed a numerical simulator to compute time-dependent behavior of electric field,ionconcentration,and interfacial polarization mechanisms in sedimentary rocks.The algorithm numericallysolves the Poisson-Nernst-Planck(PNP)equations in the time domain conjointly with a mineral-dependentelectrochemical adsorption/desorption equilibrium model.Then,we use the numerical simulator to performa sensitivity analysis to quantify the influence of electrolyte and interfacial properties on the permittivityof pore-scale samples at different frequencies.Results demonstrated that the joint effect of Stern layerion concentration and corresponding mobility dominates sub-MHz dielectric response of rocks.The low-frequency permittivity enhancement due to the EDL can sweep several orders of magnitude.The Stern layerpolarization acts as a macroscopic(i.e.,at the grain scale)dipole created by counterions wading around thesurface of the grains due to an externally applied electric field.Therefore,the grain shape and correspondingorientation relative to the electric field significantly affect the behavior of macroscopic Stern layer dipoles.Reliable interpretation of multi-frequency electrical measurements can provide insights in mineralogy,fluid typing,grain size,and interfacial properties.Time-domain numerical modeling of complex permittivitydispersion can greatly enhance interpretation of multi-frequency dielectric measurements.
机译:彻底了解偏振机构之间的相互作用对于电子测量的解释至关重要,因为沉积岩石中的亚MHz电气测量是由入线性极化机制主导的。然而,摇滚物理模型过度简化的孔网几何形状,电双层的相互作用(EDL)与相邻的谷物有关。提高化合物对岩石物理性质的影响,例如碳氢化合物储备,是难以提出的,并且往往未知。数字算法呈现出沉积岩石电电器的理想框架,避免岩石物理学的限制Models.our RemotalDeveloped算法模拟了电场与溶液中的离子的相互作用。然而,与船尾层相关的偏振机构的弹性机构尚未开发出来。沉积岩石中的亚kHz介电常数增强由船尾层主导因此,本文的目标是开发一种数字仿真框架,能够量化船尾和漫射层极化,温度,离子浓度和孔网几何形状的影响,频率复杂电测量.WE开发了一种数值模拟器计算电场,离子浓度和界面偏振机制的时间相关行为。算法与矿物依赖性电化学吸附/解吸平衡模型合并在时域中的Poisson-nernst-planck(PNP)方程数值。该算法我们使用数值模拟器来执行敏感性分析,以量化电解质和界面性质对不同频率的孔隙尺度样本的影响。结果证明了船尾分层浓度的关节效应和相应的迁移率占主导地位的亚MHz介电响应。岩石。低频每次由于EDL引起的推出可以扫描几个数量级。斯特恩层散序作为宏观(即,在晶粒量表)上由抗衡离子产生的偶极子,由于外部施加的电场而围绕颗粒的晶粒的晶粒。因此,谷物相对于电场的形状和对象性显着影响宏观层偶联的行为。可以提供多频电测量的解释,可以在矿物学,流体打字,粒度和界面性质中提供见解。复杂渗透率的时间域数值模型可以大大提高对多频电介质测量的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号