首页> 外文会议>SPE Annual Technical Conference and Exhibition >Physics-Based Fluid Flow Modeling of Liquids-Rich Shale Reservoirs Using a 3D 3-Phase Multi-Porosity Numerical Simulation Model
【24h】

Physics-Based Fluid Flow Modeling of Liquids-Rich Shale Reservoirs Using a 3D 3-Phase Multi-Porosity Numerical Simulation Model

机译:使用3D三相多孔数值模拟模型的液体丰富的页岩储层的物理流体流量模型

获取原文
获取外文期刊封面目录资料

摘要

Production from liquids-rich shale reservoirs in the United States and Canada has increased significantly during the past few years.However,a rigorous understanding of shale rocks and fluid flow through them is still limited and remains a challenge.Thus,the objective of this research is developing a 3D physicsbased model for simulating fluid flow through these types of multi-porosity rocks.This is important given the recent spread of these types of reservoirs throughout the world.Simulation of liquids-rich shale reservoirs is carried out with the construction of an original fully-implicit 3D multi-phase semi-compositional finite difference numerical formulation,which uses a multiple porosity approach as well as diffusion from solid kerogen.The multi-porosity system includes(1)adsorbed porosity,(2)organic porosity,(3)inorganic porosity,(4)natural fracture porosity,and(5)hydraulic fracture porosity.The numerical model is developed with capabilities to handle dissolved gas in the solid part of the organic matter,adsorption/desorption from the organic pore walls,viscous and non-Darcy flow mechanisms(slip flow and Knudsen diffusion),and stress-dependent properties of natural and hydraulic fractures.Examples of simulated results are presented as cross-plots of pressure,production rates and cumulative production vs.time.These plots are utilized to show the contributions of free gas,adsorbed gas and dissolved gas on fluid production from liquids-rich shale reservoirs.Results indicate that both desorption and gas diffusion positively affect shales' performance.Simulation results demonstrate that not taking into account desorption and diffusion from solid kerogen leads to underestimating production from liquids-rich shale reservoirs.Furthermore,the simulation study shows that long periods of time are required for the effects of these two mechanisms to be manifested.This helps to explain why shales have been produced over long periods of time(several decades)like in the case of Devonian wells located in the Appalachian basin.The type of 3D simulation model for multi-porosity liquids-rich shale reservoirs developed in this paper is not currently available in the literature.The approach implemented in this work provides a novel and important foundation for simulating complex shale reservoirs.
机译:在过去几年中,美国和加拿大的液体丰富的页岩水库生产在很短的几年里显着增加。然而,通过对它们的流体流动严谨地了解它们仍然有限,仍然是挑战。这项研究的目的仍然是有限的。正在开发用于通过这些类型的多孔隙岩石模拟流体流动的3D物理基础模型。这一重要的是,鉴于最近这些类型的储层在全世界的速度传播。富含液体的页岩储层的构建原始完全隐式的3D多相半成分组成有限差值数值配方,其使用多孔率方法以及来自固体角膜原的扩散。多孔隙度系统包括(1)吸附孔隙率,(2)有机孔隙率,(3 )无机孔隙率,(4)天然骨折孔隙率,和(5)液压断裂孔隙率。数值模型采用固体PA处理溶解气的能力开发有机质的RT,来自有机孔壁的吸附/解吸,粘性和非达西流动机制(滑动流动和knudsen扩散),以及天然和液压骨折的应力依赖性。模拟结果的示例呈递为横跨压力,生产率和累积生产的曲线。这些地块用于从富含液体的页岩储层的流体生产上显示自由气体,吸附的气体和溶解气体的贡献。结果表明解吸和气体扩散都积极影响Shales的性能证明,未考虑来自固体角化根的解吸和扩散,导致富含液体的页岩储层的生产。繁殖研究表明这两种机制的效果需要长时间的时间。表现出来。这有助于解释为什么Shales已经在很长一段时间内产生了(几十年),如o F Devonian Wells位于Appalachian盆地。本文开发的多孔隙液丰富的页岩储层的3D仿真模型目前尚未在文献中提供。本工作中实施的方法为模拟提供了一种新颖和重要的基础复杂页岩水库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号