首页> 外文会议>ASPE Topical Meeting >METROLOGY FOR ADDITIVE MANUFACTURING PARTS AND PROCESSES
【24h】

METROLOGY FOR ADDITIVE MANUFACTURING PARTS AND PROCESSES

机译:添加剂制造部件和工艺的计量

获取原文

摘要

Additive manufacturing (AM) comprises a range of deposition processes which include, but are not limited to, direct metal laser sintering (DMLS), electron beam melting, direct metal deposition, photo polymerization, stereo-lithography, and fused deposition modeling. While rapid prototyping techniques have been available for more than two decades [1, 2], AM has experienced phenomenal growth in recent years driven by new applications and processes associated with design, prototyping, limited quantity production, tooling and fixturing, and repair or modification of existing parts. The advantages of additive manufacturing include reduced setup costs, fast turnaround, and the ease of fabricating designs that lack symmetry, that include arbitrary freeform geometries, and/or that include complex internal geometries. While metrology tools exist that are useful for additive parts and processes, AM provides challenges which have not yet been addressed by industry or the research communities. Any designer has in mind functional requirements, and through the design, satisfies these functional requirements. While design parameters include material properties and geometry, the current work is limited to how additive manufacturing technologies meet geometry requirements such as part dimensions, surface form, and surface finish or texture. "Traditional" subtractive manufacturing methods (i.e. machining) generate a desired geometry through removal of stock material using a cutting tool whose location is controlled by the machine's motion platform. To first order, dimensional geometry errors are driven by the accuracy of the machine tool, while tool interactions with the workpiece tend to control the surface finish generated by machining. The location of the tool can be predicted through machine modeling [3,4]. We can express the actual location of the tool as a vector function: r_(act) = r_(nom)+δ (1) δ=f(x,y,z) where r and δ are vectors, and the subscripts denote actual position or nominal position. The generated part geometry is generally considered to be deterministic based on the tool location.
机译:添加剂制造(AM)包括一系列沉积方法,其包括但不限于直接金属激光烧结(DML),电子束熔化,直接金属沉积,光聚合,立体光刻和熔融沉积建模。虽然快速的原型技术已有超过二十多年[1,2],但近年来,近年来的现象增长是由新的应用和流程与设计,原型,有限的数量生产,工具和固定的过程相关的,以及修理或修改现有部分。添加剂制造的优点包括减少的设置成本,快速转圆,以及缺乏对称性的易于制造设计,包括任意的自由形状几何形状,和/或包括复杂的内部几何形状。虽然存在对附加零件和流程有用的计量工具,但我提供了行业或研究社区尚未解决的挑战。任何设计师都在思想功能要求,通过设计,满足这些功能要求。虽然设计参数包括材料特性和几何形状,但目前的工作仅限于添加剂制造技术如何满足几何要求,如零件尺寸,表面形式和表面光洁度或纹理。 “传统的”减去“制造方法(即加工)通过使用切割工具除去库存材料来产生所需的几何形状,其位置由机器的运动平台控制。对于一阶,尺寸几何误差由机床的精度驱动,而与工件的刀具相互作用倾向于控制通过加工产生的表面光洁度。通过机器建模可以预测工具的位置[3,4]。我们可以将工具的实际位置显示为矢量功能:r_(动作)= r_(nom)+Δ(1)Δ= f(x,y,z)其中r和δ是矢量,并且下标表示实际位置或标称位置。生成的部件几何形状通常被认为是基于工具位置的确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号