首页> 外文会议>American Institute of Chemical Engineers Annual Meeting >Locating Bifurcation Points for Seeking All Real Roots to a System of Nonlinear Equations with a New Homotopy
【24h】

Locating Bifurcation Points for Seeking All Real Roots to a System of Nonlinear Equations with a New Homotopy

机译:定位用于寻找所有真实根部的分叉点,以具有新同谐物的非线性方程系统

获取原文
获取外文期刊封面目录资料

摘要

A new homotopy method, referred to here as the Fixed-Point Newton (FPN) homotopy, is presented for seeking all real solutions to a system of nonlinear algebraic and/or transcendental equations. This homotopy is a linear combination of the fixed-point and the Newton homotopies. Before forming the new homotopy, the original system of equations is changed to a new system of equations by multiplying each of the i equations by (x_i -x_1~0), where x~0 is selected as the starting point. The FPN homotopy is applied, and bifurcation points are generated. It is mathematically proved that one of the unknown variables of the bifurcation points equals the unknown variable of the initial point (e.g. x 1 = x_1~0). The other unknown variables of the bifurcation points are obtained by solving (n-1) nonlinear equations. The Bifurcation points of this system result from solving the (n-2) nonlinear equations (e.g. x1 = x_1~0, x2 = x_2~0). The other unknown variables equal to their unknown variables at the initial point. If this procedure is repeated, only one equation with one unknown variable is generated. The other unknown variables equal to the unknown variables of the initial point (e.g. x 1 =x_1~0,x2 =x_2~0,---,x_n = x_n~0). If the last equation is solved using the FPN homotopy, the coordinates of the bifurcation points of the system of 2 nonlinear equations are obtained. All the roots of the system of equations are obtained by switching to the other branches from these bifurcation points. If we continue this procedure, finally the coordinates of bifurcation points of the system of n equations will be found. The other bifurcation points (e.g. at x2 =x_2~ 0 or x3 = x_3~0 or…or x_n = x_n~0) are found in the same way. After finding all bifurcation points, it is necessary to switch to other branches which are bifurcated from these points to seek all solutions to the new system of equations.
机译:提出了一种新的同型方法,作为定点牛顿(FPN)同型,用于寻找非线性代数和/或超轮型方程系统的所有真实解。这种同态性是固定点和牛顿同型偶象的线性组合。在形成新的同谐起之前,通过将每个等式乘以(xi -x_1〜0)将每个方程式乘以,其中选择x〜0作为起始点来改变为新的方程式的新系统。施加FPN同型同型同型同型同型分叉点。在数学上证明了分叉点的未知变量之一等于初始点的未知变量(例如x 1 = x_1〜0)。通过求解(N-1)非线性方程来获得分叉点的其他未知变量。该系统的分叉点求解(N-2)非线性方程(例如x1 = x_1〜0,x2 = x_2〜0)。其他未知变量等于初始点处的未知变量。如果重复此过程,则仅生成一个具有一个未知变量的一个方程。另一个未知变量等于初始点的未知变量(例如x 1 = x_1〜0,x2 = x_2〜0,---,x_n = x_n〜0)。如果使用FPN同型求解最后一个等式,则获得2个非线性方程系统的分叉点的坐标。通过从这些分叉点切换到其他分支来获得等式系统的所有根。如果我们继续这个程序,最后将找到N方程系统的分叉点的坐标。以相同的方式找到其他分叉点(例如,在x2 = x_2〜0或x3 = x_3〜0或...或x_n = x_n〜0)。在找到所有分叉点之后,有必要切换到从这些点分叉的其他分支,以寻求所有方程式系统的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号