首页> 外文会议>AIChE Spring National Meeting >Nanoscale Fluid Flow - Molecular Dynamics Simulations with Solid-Liquid Interfaces
【24h】

Nanoscale Fluid Flow - Molecular Dynamics Simulations with Solid-Liquid Interfaces

机译:纳米级流体流动 - 具有固液界面的分子动力学模拟

获取原文

摘要

For the cases of flows with very high shear rate, or in the case of dimensions on the order of nm, the continuum or Newtonian hypothesis bfeaks down. Molecular dynamics (MD) method emerges as a viable approach to address fluid flow problems. MD potentially can address the issues such as solidfluid interfaces/interactions arising in the nanoscale-regime. Furthermore, large scale simulations based on atomistic models may also address the transition from atomistic to continuum scale approaches. In this study, we run two different sets of MD simulations to elucidate these issues. First, we'analyze the size and time averaging effects by performing large size periodic boundary condition MD simulations toevaluate the convergence of average velocity, temperature, and density corresponding to the length of averaging time and size of spatial bins. Based on the convergence, we observe that the error in fluid properties is within an acceptable range in spite of the discrete behavior of the molecules. Second, most previous MD simulations of nano-scale, shear driven fluid flows use specular type walls, consisting of wall molecules with infinite mass. However, the thermal equilibrium at the wall-fluid interface is often neglected in the system. To consider the thermal equilibrium at the wall-fluid interface, we have used the crystal wall model with atomic bonding stiffness and assume that the wall interacts with the fluid molecules and exchanges momentum. Therefore, the net energy of fluid is conserved by exchanging energy with the wall-fluid interface. Hence, our model is a more accurate description of the real physics of the problem, without the need for an imaginary external heat bath connected to the fluid. Our model, with wall-fluid interactions matches the results of existing models. However, since our model implements the energy exchange through the wall-fluid interface, we observe the temperature jump at the wall-liquid interface, which is not possible with previous models.
机译:对于具有非常高的剪切速率的流动的情况,或者在NM的顺序的尺寸的情况下,连续内或牛顿假设Bfeaks下降。分子动力学(MD)方法作为解决流体流动问题的可行方法。 MD可能会解决纳米级政题中产生的SolidFluid接口/交互等问题。此外,基于原子模型的大规模模拟也可能解决从原子转变到连续尺度方法的转变。在这项研究中,我们运行了两组不同的MD模拟来阐明这些问题。首先,我们通过执行大尺寸周期边界条件MD模拟来分析大小和时间平均效果,以观察到平均速度,温度和密度的收敛对应于平均时间和空间箱的尺寸的长度。基于收敛,我们观察到流体性质中的误差在不可接受的范围内,尽管分子的离散行为。其次,最先前的MD模拟纳米级,剪切驱动的流体流动使用镜面壁,由具有无限质量的壁分子组成。然而,在系统中通常忽略壁流界面处的热平衡。为了考虑壁流界面处的热平衡,我们使用具有原子粘合刚度的晶体壁模型,并假设壁与流体分子相互作用并交换动量。因此,通过利用壁流界面交换能量来保护流体的净能量。因此,我们的模型是对问题的真实物理的更准确描述,而无需将与流体连接的虚部外部热浴。我们的模型,墙面互动与现有模型的结果相匹配。然而,由于我们的模型通过墙面界面实现能量交换,因此我们观察壁液界面处的温度跳跃,这是之前的模型不可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号