首页> 外文会议>European Conference on Lasers Electro-Optics and the International Quantum Electronics Conference >Generalized envelope equation for studying sub-cycle dynamics and multiple-harmonic spectral broadening in highly nonlinear waveguides
【24h】

Generalized envelope equation for studying sub-cycle dynamics and multiple-harmonic spectral broadening in highly nonlinear waveguides

机译:高度非线性波导中研究子循环动力学和多谐波宽度的广义包络方程

获取原文

摘要

The numerical modelling of ultrashort pulse propagation in highly nonlinear waveguides such as photonic crystal fibers or photonic nanowires typically uses some form of generalized nonlinear Schrodinger equation [1]. However, when considering propagation of ultrabroad bandwidth fields with temporal structure approaching the single-cycle regime, there is a clear need to examine the validity of such envelope-based approaches. In this paper, we present a generalized nonlinear envelope equation (GNEE) that we demonstrate to be valid for regimes where the pulse bandwidth spans many times the optical carrier frequency, and where the temporal electric field contains structure on a sub-cycle 50 attosecond timescale. The key elements of our approach compared to previous few-cycle propagation models are the explicit identification of a third harmonic generation (THG) term in the nonlinear polarization, and the integration of carrier evolution effects directly onto the complex pulse envelope itself. This allows us lift the "slowly varying envelope" and "slowly evolving wave" approximations that have previously limited the application of envelope-approaches to sub-cycle regimes. The use of a GNEE model also allows efficient numerical solution and ready integration of realistic effects such as frequency-dependent mode area and Raman scattering. Our GNEE simulations have been compared in detail with the direct numerical integration of Maxwell's equations. For propagation in a dispersionless χ{sup}(3) medium, Fig. 1(a) presents results for optical shock formation, showing (i) temporal field profile, (ii) detail of the optical shock, and (iii) corresponding spectrum. GNEE simulations (solid lines) are in excellent quantitative agreement with Maxwell's equations (circles) even for this extreme case where nonlinear spectral broadening extends over 10 times the carrier frequency, and the temporal carrier exhibits shock dynamics on a sub-50 attosecond timescale. GNEE modelling is particularly relevant to experiments in highly nonlinear waveguides such as silica nanowires where extreme confinement can lead to new supercontinuum (SC) generation regimes. Fig. 1(b) shows results simulating SC generation in a 600 nm diameter nanowire, illustrating broadening over multiple octaves. Significantly, simulations without the inclusion of the THG term in the nonlinearity show significantly reduced broadening, illustrating its crucial role in this regime. Additional simulations show that the GNEE approach can also accurately model carrier envelope offset (CEO) phase effects and CEO-dependent nonlinear interactions.
机译:在高度非线性波导例如光子晶体光纤或光子纳米线超短脉冲传播的数字建模通常使用某种形式的广义非线性薛定谔方程[1]。但是,考虑到超宽带宽领域的传播在与时间结构接近单循环制度,有明确的需要研究的这种基于包络的方法的有效性。在本文中,我们提出了一个广义非线性信封方程(GNEE),我们证明是有效的机制,其中光载波的频率的脉冲带宽跨度很多次,并且其中所述时间电场包含在子周期50阿秒时间尺度结构。比以前的几周期的传播模型我们的方法的关键要素是在非线性偏振的第三谐波产生(THG)项的显式标识,以及载体演变的影响直接集成到复杂的脉冲包络本身。这让我们解除“缓慢变化的包络”和“缓慢发展的浪潮”近似值,以前限制的应用程序包络接近子循环机制。使用GNEE模型还允许高效的数值解和逼真的效果,例如频率相关的模式区和拉曼散射准备集成。我们GNEE模拟已经与麦克斯韦方程的直接数值积分详细的比较。一种用于在无散射χ{SUP}传播(3)培养基,图1(a)中呈现的结果用于光学冲击波的形成,表现出(I)的时间的场分布,(ii)所述光学休克的细节,和(iii)对应的频谱。 GNEE模拟(实线)与麦克斯韦方程(圆圈)即使对于其中非线性频谱展宽延伸过10倍的载频这种极端情况下,优异的定量协议,并在子50阿秒时间刻度的时间载体展品休克动力学。 GNEE建模是高度非线性波导如二氧化硅纳米线,其中极端限制可导致新的超连续谱(SC)产生制度,以实验特别相关。图1(b)示出结果在一个600纳米直径的纳米线模拟SC的产生,拓宽示出在多个八度。显著,而无需在非线性节目列入THG长期的模拟显著减少加宽,说明这一制度的关键作用。额外的模拟表明,该GNEE方法也准确模型载波包络偏移(CEO)相位效应和CEO依赖性的非线性相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号