首页> 外文会议>European Conference on Lasers Electro-Optics and the International Quantum Electronics Conference >Thermal lens spectroscopy gas sensing based on etalon-stabilized wavelength sweep technique for fiber ring laser
【24h】

Thermal lens spectroscopy gas sensing based on etalon-stabilized wavelength sweep technique for fiber ring laser

机译:基于标准孔稳定波长扫描纤维环激光扫描技术的热透镜光谱气体感应

获取原文

摘要

Optical gas sensors using laser diodes have received attention because they satisfy air-monitoring requirements. Various sensor configurations have been proposed and developed that are basically applications of laser spectroscopy methods. Because of this, it is necessary to extend the length of the optical absorption path to enhance the sensitivity. To overcome this problem, our earlier work proposed an optical fiber gas sensor based on a thermal lens (TL) spectroscopy technique. One feature of our technique is that the optical absorption path is much shorter (usually 20-50 μm) compared with other optical spectroscopy techniques. In our previous apparatus, it is necessary to use a wavelength-tunable laser diode as the light source for pumping the TL. However, this laser diode was not only extremely expensive but also troublesome because it required accurate wavelength adjustments. Additionally, the coverage of the tunable wavelength was extremely narrow in commercial laser diodes, limiting the ability to sense typical gases. To overcome these problems, we propose the TL spectroscopy gas-sensing apparatus based on an etalon-stabilized wavelength sweep technique for fiber ring laser. Figure 1 shows a block diagram of our measurement apparatus. The configuration of this apparatus is basically a fiber ring laser containing our TL sensor head and wavelength-tunable devices on the inside of the ring loop. A fiber Bragg grating (FBG; λ{sub}o = 1532.8 nm, FWHM = 1 nm) is the coarse-tuning device of the oscillation wavelength, and an etalon plate (FWHM = 0.02 nm, FSR = 50 GHz) is the fine-tuning device. The etalon plate is mounted on a high-precision rotation stage, which is driven with a piezo actuator so that its rotation angle can be varied, resulting in the optical route distance changing. The rotation angle was estimated to be approximately 10 arc-minutes, which corresponds to the sweep span of approximately 0.1 nm. This span is sufficient for gas spectroscopic detection. Here, the beam is an ordinary continuous wave (CW). The optical coupling efficiency of TL detection head is significantly changed, depending on the optical absorption spectrum of the gas, when the wavelength of the pumping beam is swept smoothly. The TL detection signal could be obtained as an alternate signal by sweeping, enabling synchronous detection with a sweep signal using a lock-in amplifier.
机译:使用激光二极管的光学气体传感器已经受到关注,因为它们满足空气监测的需求。各种传感器配置已经提出和开发了基本上的激光光谱学方法的应用程序。由于这个原因,有必要延长光学吸收路径的长度,以提高灵敏度。为了克服这个问题,我们早期的工作提出了基于热透镜(TL)光谱技术的光纤气体传感器。我们的技术的一个特征是,与其它光学光谱技术相比,光吸收路径要短得多(通常20-50微米)。在我们以前的装置中,有必要使用一个波长可调激光二极管作为光源用于泵送TL。然而,这种激光二极管不仅非常昂贵,而且麻烦,因为它需要精确波长的调整。此外,可调谐波长的覆盖范围受到极大缩小商用激光二极管,限流,以感测典型气体的能力。为了克服这些问题,提出了一种基于对光纤环激光器的标准具稳定波长扫描技术的TL光谱气体感测装置。图1示出了我们的测量装置的框图。该装置的结构基本上包含我们TL传感器头和波长可调谐设备上的环圈的内部的光纤环激光器。光纤布拉格光栅(FBG;λ{子} O = 1532.8纳米,FWHM = 1 nm)为振荡波长的粗调装置,以及标准具板(FWHM = 0.02纳米,FSR = 50GHz的)是细-tuning设备。标准具板被安装在高精度旋转台,被驱动用压电致动器,使得其旋转角度可以被改变,从而导致光学路径距离改变。旋转角度估计为约10弧分,其对应于大约0.1纳米的扫描范围。这个跨度足以气体光谱检测。这里,波束是一个普通的连续波(CW)。 TL检测头的光耦合效率变化显著,根据气体的光吸收光谱中,当泵浦光的波长被平稳地扫描。该TL检测信号可以作为备用信号通过清扫,使用锁定放大器使能同步检测用的扫描信号而获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号