首页> 外文会议>Conference on Commercial and Biomedical Applications of Ultrafast Lasers >Numerical modeling of nonlinear plasma formation in high-NA micromachining of transparent materials and biological cells using ultrashort laser pulses
【24h】

Numerical modeling of nonlinear plasma formation in high-NA micromachining of transparent materials and biological cells using ultrashort laser pulses

机译:超快速激光脉冲在透明材料和生物细胞高Na微机械中形成非线性等离子体形成的数值模拟

获取原文

摘要

Ultrashort laser pulses recently found extensive application in micro- and nanostructuring, in refractive surgery of the eye, and in biophotonics. Due to the high laser intensity required to induce optical breakdown, nonlinear plasma formation is generally accompanied by a number of undesired nonlinear side-effects such as self-focusing, filamentation and plasma-defocusing, seriously limiting achievable precision and reproducibility. To reduce pulse energy, enhance precision, and limit nonlinear side effects, applications of ultrashort pulses have recently evolved towards tight focusing using high numerical aperture microscope objectives. However, from the theoretical and numerical point of view generation of optical breakdown at high numerical aperture focusing was barely studied. To simulate the interaction of ultrashort laser pulses with transparent materials, a comprehensive numerical model taking into account nonlinear propagation, plasma generation as well as the pulse's interaction with the generated plasma is introduced. By omitting the widely used scalar and paraxial approximations a novel nonlinear propagation equation is derived, especially suited to meet the conditions of high numerical aperture focusing. The multiple rate equation (MRE) model is used to simultaneously calculate the generation of free electrons. Nonparaxial and vectorial diffraction theory provides initial conditions. The theoretical model derived is applied to numerically study the generation of optical breakdown plasmas, concentrating on parameters usually found in experimental applications of cell surgery. Water is used as a model substance for biological soft tissue and cellular constituents. For focusing conditions of numerical aperture NA < 0.9 generation of optical breakdown is shown to be strongly influenced by plasma defocusing, resulting in spatially distorted breakdown plasmas of expanded size. For focusing conditions of numerical aperture NA ≥ 0.9 on the other hand generation of optical breakdown is found to be almost unaffected by distortive side-effects, perfectly suited for material manipulation of highest precision.
机译:超短型激光脉冲最近发现在微型和纳米结构中的广泛应用,在眼睛的屈光手术和生物学学中。由于诱导光学击穿所需的高激光强度,非线性等离子体形成通常伴随着许多不期望的非线性副作用,例如自聚焦,丝状和等离子体散焦,严重限制可实现的精度和再现性。为了减少脉冲能量,增强精度和限制非线性副作用,最近使用高数值光圈显微镜目标进化了超短脉冲的应用。然而,从理论和数值的角度来看,高数孔径聚焦处的光学击穿的产生几乎没有研究。为了模拟透明材料的超短激光脉冲的相互作用,引入了考虑了非线性传播,等离子体生成以及与产生等离子体的脉冲相互作用的综合数值模型。通过省略广泛使用的标量和近似近似,导出了一种新颖的非线性传播方程,特别适用于满足高数值孔径聚焦的条件。多速率等式(MRE)模型用于同时计算自由电子的产生。非诊断和六衍射理论提供初始条件。衍生的理论模型应用于数值研究光学击穿等离子体的产生,浓缩通常在细胞手术的实验应用中发现的参数。用作生物软组织和细胞成分的模型物质。对于数值孔径Na <0.9的光学击穿的聚焦条件,显示出受等离子体散焦的强烈影响,导致膨胀尺寸的空间扭曲的击穿等离子体。对于数值孔径Na≥0.9的聚焦条件,另一方面发现光学击穿的产生几乎不受扭曲副作用的影响,完全适合于最高精度的材料操纵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号