首页> 外文会议>Conference on Device and Process Technologies for Microelectronics, MEMS, and Photonics >Modelling of sacrificial spin-on glass (SOG) etching in non-straight microchannels using hydrofluoric acid
【24h】

Modelling of sacrificial spin-on glass (SOG) etching in non-straight microchannels using hydrofluoric acid

机译:使用氢氟酸在非直微通道中蚀刻牺牲旋转玻璃(SOG)蚀刻的建模

获取原文

摘要

This paper studies spin-on glass (SOG) etching in T-shaped microchannels by hydrofluoric acid (HF). Since oxide etching by HF in microchannels is both reaction and diffusion limited, an etching model based on non-first order chemical reaction/steady-state diffusion sacrificial layer etching mechanism is presented to compensate for the etching effect at channel junction. Microchannels are formed on silicon substrate by deep reactive ion etching (DRIE). Samples with channel depth varying from 1μm to 6 μm are prepared by varying exposure time to reactant gas in DRIE chamber. Channel widths prior to the junction are varied from 2 μm to 10 μm while channel width beyond the junction is fixed at 5 μm. The channels are then filled with SOG by multiple spin, bake and cure processes. After etchback planarization using 5% HF solution, the samples are coated with 1.5 μm thick positive photoresist. An etch window is opened at channel fronts to expose underlying SOG. The samples are then time-etched in 5% HF solution and etch front propagation is observed under optical microscope through the transparent photoresist layer. It is observed that SOG etch rate in the microchannels is independent of channel width or channel depth. SOG etch rate at channel's T-junction is 0.67 times lower than etch rate in the straight channels preceding it due to HF concentration variation and etch product transfer rate variation effects. The proposed model fits experimental data well. Offset crosses vent pattern is determined as a good candidate for removing sacrificial oxide under an enclosed cap structure.
机译:本文通过氢氟酸(HF)研究旋转玻璃(SOG)蚀刻在T形微通道中。由于HF在微通道中的氧化物蚀刻是反应和扩散限制,因此提出了一种基于非第一阶化学反应/稳态扩散牺牲层蚀刻机构的蚀刻模型以补偿在通道结处的蚀刻效果。通过深反应离子蚀刻(Drie)在硅衬底上形成微通道。通过在Drie室中的反应气体中改变暴露时间来制备具有1μm至6μm的通道深度的样品。在结处的​​通道宽度在2μm至10μm处变化,而通道宽度超过结的通道固定为5μm。然后通过多个旋转,烘烤和固化过程填充频道。使用5%HF溶液蚀刻平坦化后,将样品涂覆有1.5μm厚的正光致抗蚀剂。在频道前沿打开蚀刻窗口以暴露底层袜子。然后将样品在5%HF溶液中逐次蚀刻,并且在光学显微镜下通过透明光致抗蚀剂层观察蚀刻前传播。观察到微通道中的Sog蚀刻速率与通道宽度或通道深度无关。由于HF浓度变化和蚀刻产品转移率变化效应,通道的T频率下的SOG蚀刻速率比其直通道中的蚀刻速率低0.67倍。所提出的模型适合实验数据。偏移交叉通气模式被确定为在封闭的帽结构下去除牺牲氧化物的良好候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号