首页> 外文会议>SAE Noise and Vibration Conference and Exhibition >Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems
【24h】

Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems

机译:排放控制系统中塞流消声器的建模与优化

获取原文

摘要

Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature. The transmission loss required in each application of the ECS system will vary depending on the noise profile of the generator in question; therefore, it is necessary to have an effective method of redesigning the muffler to meet the design requirements. Prior work on TMM-based muffler shape optimization utilized complex algorithms such as neural networks and simulated annealing. The present study simplifies the process by using the bounded, limited-memory implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm in a multi-start framework for shape optimization to achieve the desired transmission loss. By constraining the multi-start method with appropriate design limits, the algorithm is initialized at multiple random points within the design space, ensuring that the solution approaches the global optimum when using a sufficiently large number of initializations.
机译:通常通过柴油或天然气发生器实现大规模的应急或离网发电。为了满足政府排放要求,需要排放控制系统(ECS)。在操作中,还需要对发电机的声发射的有效控制,并且可以在ECS系统内完成。普通使用插头流动消声器,因为它们在紧凑的结构中提供了足够的噪声衰减水平。关键设计参数是消声器的传输损耗,因为这决定了给定频率的衰减水平。这项工作通过传输矩阵方法(TMM)使用多个穿孔阻抗模型来实现分析解耦解决方案,以基于消声器几何体预测传输损耗。实现了等效的有限元模型以用于数值模拟。然后评估分析结果和数值结果对来自文献的实验数据。 ECS系统的每个应用中所需的传输损耗将根据所讨论的发电机的噪声轮廓而变化;因此,有必要有一种有效的方法,重新设计消声器以满足设计要求。在基于TMM的消声器形状优化的事先上使用复杂算法,如神经网络和模拟退火。本研究通过在多启动框架中使用Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法的界限,有限的存储器实现来简化该过程,以实现所需的传输损耗。通过限制具有适当设计限制的多启动方法,该算法在设计空间内的多个随机点初始化,确保解决方案在使用足够大量的初始化时接近全局最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号