首页> 外文会议>IEEE LEOS Annual Meeting Conference >160-Gb/s all-optical OTDM demultiplexing and pulse reshaping by using cascaded wavelength conversion in PPLN waveguides
【24h】

160-Gb/s all-optical OTDM demultiplexing and pulse reshaping by using cascaded wavelength conversion in PPLN waveguides

机译:通过在PPLN波导中使用级联波长转换,通过使用级联波长转换,通过使用级联波长转换,通过使用级联波长转换

获取原文

摘要

Ultra-fast all-optical demultiplexer is required in future high-speed optical time-division-multiplexed (OTDM) transmission systems [1]. As an important nonlinear interaction, the cascaded second-harmonic generation (SHG) and difference frequency generation (DFG) wavelength conversion in quasi-phase-matched (QPM) periodically poled lithium niobate (PPLN) waveguide has many advantages, such as ultra-fast response, low noise, high efficiency, broad band width, high dynamic range, and integration compatibility [2-4]. Recently, by using the SHG-DFG-based wavelength conversion technique, all-optical demultiplexing from 40 Gb/s to 10 Gb/s [5], from 100 Gb/s to 10 Gb/s [6] and from 160 Gb/s to 20 Gb/s [7] has been experimentally demonstrated, and some numerical analyses have also been reported [8, 9]. In the OTDM demultiplexing based on the SHG-DFG-based wavelength conversion, two input pulse trains, i.e., multiplexed signal and demultiplexing clock, are injected into a QPM PPLN waveguide, and taken as the pump and control waves. In a typical demultiplexing case shown in Fig. 1, the converted wave from the PPLN waveguide has the same bit rate as the clock (10 Gb/s), and carries the code information demultiplexed from the required channel of the 160-Gb/s signal. As depicted in Fig. 2, there are two schemes to arrange 160- and 10-Gb/s pulses with respect to their wavelengths and the device QPM wavelength. In Scheme I, the 10-Gb/s clock is set at the QPM wavelength (pump wave), and the 160-Gb/s signal is regarded as the control wave. Vice versa in Scheme II. The demultiplexed signal is hence different in the two schemes. In this work, typical OTDM demultiplexing from 160 to 10 Gb/s in the two schemes are theoretically analyzed. In particular, the characteristics of conversion efficiency, pulse reshaping and time delay of the demultiplexed pulses are emphasized. The device used in the simulation has similar properties to those used in the previous experiments [5, 10]. The poling period is ~18.5μm, and the exact QPM wavelength of pump is 1543.0 nm. The waveguide length of 20 mm, and its normalized SHG efficiency is ~190%/W at 100-mW pump power. Based on the derived coupled-mode equations [10], the pulse propagation and nonlinear interactions among the pump, SH, signal and converted waves in the PPLN waveguide were obtained numerically. Here, we took 15-dBm injected average power and 30-dB signal-to-nose ratio for the both 160- and 10-Gb/s input pulses (2.0-ps Gaussian pulses).
机译:未来的高速光学时分多路复用(OTDM)传输系统需要超快速全光解复用器[1]。作为一个重要的非线性相互作用,级联的二谐波生成(SHG)和差频产生(SHG)和差频生成(DFG)在准相位匹配(QPM)周期性抛光锂铌酸锂(PPLN)波导中具有许多优点,例如超快响应,低噪声,高效,宽带宽度,高动态范围和集成兼容性[2-4]。最近,通过使用基于SHG-DFG的波长转换技术,从40 Gb / s到10 gb / s [5]的全光解复用,从100 gb / s到10 gb / s [6]和160 gb / S至20 GB / s [7]已经通过实验证明,还报告了一些数值分析[8,9]。在基于SHG-DFG的波长转换的OTDM多路分解中,将两个输入脉冲列车,即复用信号和解复用时钟注入QPM PPLN波导中,并作为泵和控制波。在图1所示的典型解复用箱中。如图1所示,来自PPLN波导的转换波具有与时钟(10GB / s)相同的比特率,并且携带从160-GB / s的所需信道解复用的代码信息信号。如图1中所示。如图2所示,有两种方案来布置相对于它们的波长和器件QPM波长的160-和10-GB / S脉冲。在方案I中,10-GB / S时钟设置在QPM波长(泵波)处,并且160 GB / S信号被视为控制波。反之亦然。因此,二路分解信号在两种方案中不同。在这项工作中,理论上分析了两种方案中160到10 Gb / s的典型OTDM多路分解。特别地,强调了转换效率,脉冲重塑和多路分解脉冲的时间延迟的特性。模拟中使用的设备具有与先前实验中使用的类似的属性[5,10]。极化时段为约18.5μm,泵的精确QPM波长为1543.0nm。波导长度为20毫米,其归一化SHG效率为100 MW泵电量为190%/ W.基于推出的耦合模式方程[10],在数值上获得PPLN波导中的泵,SH,信号和转换波之间的脉冲传播和非线性相互作用。在这里,我们为160-和10-GB / S输入脉冲(2.0-PS高斯脉冲)进行了15dBm注入的平均功率和30dB信号对鼻比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号