首页> 外文会议>IEEE LEOS Annual Meeting Conference >All-Optical and Optoelectronic Serial-to-Parallel Conversion of High-Speed, Asynchronous Optical Packets
【24h】

All-Optical and Optoelectronic Serial-to-Parallel Conversion of High-Speed, Asynchronous Optical Packets

机译:全光和光电串行串行转换高速,异步光学包

获取原文

摘要

In recent years, research on optical packet-switched (OPS) networks has received considerable attention with its potential to maximize throughput, scalability, and flexibility [1]-[5]. On the other hand, the realization of an OPS network faces severe technical challenges, as various packet-processing functions (label swapping/processing, buffering) must be performed on high-speed asynchronous burst input optical packets, on a packet-by-packet basis, at each node of the network. In conventional electrical routers, electrical demultiplexer and clock recovery circuits resolve the mismatch between the optical data rate and the speed of current Silicon-CMOS technology, thus allowing the application of CMOS circuits for signal processing and buffering. However, these interface circuits are ill-suited for the burst mode operation required for an asynchronous input, consume large amounts of power, and may be insufficient in terms of speed. As an alternative, OPS nodes that incorporate all-optical signal processing techniques for label processing and/or all-optical buffering with fiber delay lines have been proposed, but these approaches often lack functionality and scalability, and require complicated control schemes. These difficulties encountered by all-electrical and all-optical approaches perhaps lend credence to a hybrid approach, which would leverage CMOS density and functionality for the signal processing and buffering tasks while implementing optical and/or optoelectronic devices as the interface which performs the necessary serial-to-parallel conversion (SPC) of the high-speed asynchronous input optical packets. Proposals for SPC have included a time-to-wavelength mapping technique that utilizes wavelength conversion [6], and time-to-space mapping techniques based on four-wave mixing in a surface-normal optical switch and second harmonic generation in a waveguide device [7], [8]. However, these schemes may be difficult to scale to higher capacity and suffer from poor switching efficiency. In this paper, we review two approaches for SPC of asynchronous burst preamble-free optical packets which alleviate these issues in a compact, low-power form. The first is an optoelectronic approach targeted for 10-Gb/s to >40-Gb/s packets, based on an optically clocked transistor array (OCTA). SPC and parallel-to-serial conversion (PSC) (i.e., multiplexing), as well as generation of the clock required for both conversion functions, are achieved with a single, low-power OEIC chip [9]. The second is an all-optical approach that employs optical switching by means of differential spin excitation, for SPC of 40-Gb/s to 1-Tb/s optical packets [10]. Combined with CMOS, these interfaces enable a high-performance, highly scalable approach to optical packet switching.
机译:近年来,对光学数据包交换(OPS)网络的研究已经接受了可观的关注,以最大化吞吐量,可扩展性和灵活性[1] - [5]。另一方面,OPS网络的实现面临严重的技术挑战,因为必须在分组上对高速异步突发输入光数据包执行各种数据包处理功能(标签交换/处理,缓冲),因此基础,在网络的每个节点。在传统的电气路由器中,电解解复用器和时钟恢复电路在光学数据速率和当前硅-CMOS技术的速度之间解决不匹配,从而允许应用CMOS电路以用于信号处理和缓冲。然而,这些接口电路对于异步输入所需的突发模式操作不适用于消耗大量功率,并且在速度方面可能不足。作为替代的,已经提出了包含用于标签处理和/或全光缓冲的所有光学信号处理技术的OPS节点,但这些方法通常缺乏功能和可伸缩性,并且需要复杂的控制方案。所有电气和全光学方法所遇到的这些困难可能会使混合方法赋予混合方法,这将利用信号处理和缓冲任务的CMOS密度和功能,同时实现光学和/或光电器件作为执行必要串行的接口-to-to-to-to-to-to-to-to-to-to-topeCheliply输入光包的转换(SPC)。 SPC的提案包括利用波长转换[6]的时间 - 波长映射技术,以及基于表面正常光开关中的四波混合和波导装置中的第二谐波产生的四波混合的时间 - 空间映射技术[7],[8]。然而,这些方案可能难以扩展到更高的容量并遭受差的开关效率。在本文中,我们回顾了异步突发前导码光数据包SPC的两种方法,这些方法可以紧凑,低功率形式缓解这些问题。第一种是基于光学时钟晶体管阵列(OctA)的光电方法针对10GB / s至> 40gB / s包。使用单个低功耗OEIC芯片[9]实现SPC和并行对串行转换(PSC)(即,复用)以及转换功能所需的时钟的产生。第二种是一种通过差分旋转激励采用光学切换的全光学方法,对于40-Gb / s至1-Tb / s光学分组的SPC [10]。结合CMOS,这些接口使得能够高性能,高度可扩展的光学分组切换方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号