首页> 外文会议>Joint IST Workshop on Sensor Networks and Symposium on Trends in Communications >Improved Spectral Efficiency through Iterative Concatenated Convolutional Reed-Solomon Software Decoding
【24h】

Improved Spectral Efficiency through Iterative Concatenated Convolutional Reed-Solomon Software Decoding

机译:通过迭代级联卷积簧片软件解码改善光谱效率

获取原文

摘要

In this paper we describe an iterative algorithm for Concatenated Convolutional Reed-Solomon decoders that improve the spectral efficiency of the communication system by increasing the error correction capabilities and as a consequence lowering the retransmission rate. In our method, the decoding process starts assuming the received code word has at most t errors, where 2t+1 is the Reed-Solomon code's minimum distance. If, after the decoding process, all the syndromes are zero the decoding is successful; otherwise there were more than t errors encountered. At this point, the decoder assumes s erasure positions based on the erasure information coming from the convolutional decoder. If the error locator polynomial has degree equal to r = (2t - s)/2, then most likely the error positions are in the current Galois-Field and a second decoding algorithm is performed. Otherwise, s=s+2 erasures are assumed and again the degree of the error locator polynomial is checked. This continues until the maximum number of erasures, 2t, is reached. The Reed-Solomon decoder is executed entirely in software on the Sandbridge Processor, which features special instructions for Single Instruction Multiple Data (SIMD) Galois Field (GF) multiplication and other SIMD operations [1]. Multiple decoder algorithms with different degrees of complexity are stored in external memory, such that for a particular RS data packet the one with less computational complexity can be employed, depending on the error/erasure information. By using our method, the packet retransmission rate is decreased, resulting in improved spectral efficiency. The improved spectral efficiency is reflected by a total link budget improvement of up to one dB.
机译:在本文中,我们描述了一种用于通过增加纠错能力来提高通信系统的频谱效率,并且由于降低重传率来提高通信系统的频谱效率,从而提高通信系统的频率算法。在我们的方法中,解码过程开始假设接收的代码字在大多数T错误中,其中2T + 1是簧片所罗门代码的最小距离。如果在解码过程之后,所有横向都是零的解码成功;否则遇到了超过T错误。此时,解码器基于来自来自卷积解码器的擦除信息来假设S擦除位置。如果错误定位符多项式具有等于R =(2T-S)/ 2的程度,则最可能误差位置处于当前的Galois-ya场,并且执行第二解码算法。否则,假设S = S + 2擦除,并且再次检查错误定位器多项式的程度。这将持续到达到最大擦除次数,达到2T。 Reed-Solomon解码器完全在Sandbridge处理器上的软件执行,该处理器具有单指令多数据(SIMD)Galois字段(GF)乘法和其他SIMD操作[1]的特殊说明。具有不同程度复杂度的多个解码器算法存储在外部存储器中,使得对于特定RS数据分组,可以采用具有较少计算复杂性的算法,这取决于错误/擦除信息。通过使用我们的方法,数据包重传率降低,导致频谱效率提高。改进的光谱效率被最多一个DB的总链接预算改进反映。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号