首页> 外文会议>Society of Petroleum Engineers Reservoir Simulation Symposium >Thermodynamically Consistent Transport Coefficients for Upscaling of Compositional Processes
【24h】

Thermodynamically Consistent Transport Coefficients for Upscaling of Compositional Processes

机译:用于升高组成过程的热力学一致的传输系数

获取原文

摘要

Compositional simulation of oil reservoirs is necessary for accurate representation of the physics associated with near-miscible gas injection processes. Performing the simulations using the fine-scale geocellular model is computationally expensive; as a result, reliable upscaling methods for compositional flow are needed. Compared with black-oil models, the interactions between the thermodynamic phase behavior and the sub-grid heterogeneities that are associated with compositional dis- placements pose significant additional challenges to upscaling. We introduce a new framework to upscale multi-component, multi-phase compositional displacements with special atten- tion to accurate representation of the fine-scale phase behavior on the coarse grid. We use a mass-conservative formulation and introduce an upscaled molar mobility for each phase. These upscaled flow functions account for the sub-scale absolute and relative permeability variations, as well as, compressibility efiects. They also correct -somewhat- for numerical dispersion efiects at the coarse-grid level. The upscaling of the thermodynamic phase behavior is performed as follows. We assume that instantaneous thermodynamical equilibrium is valid at the ?ne-scale, and we derive coarse-scale equations, in which the thermodynamic phase behavior is not necessarily at equilibrium. Deviation from local equilibrium may be due to difierent bypassing mechanisms, such as fingering and channelling. As a result, the fugacity of a component in the two phases may not be equal at the coarse scale, and this deviation is quantified by the coarse-scale thermodynamic functions. We demonstrate that these upscaled functions can be interpreted as a transformation of the equilibrium phase space on the fine scale to a modified region of similar shape, but with tilted tie-lines. We then describe how to convert non-equilibrium coarse-scale behavior into the widely used transport coeficients (alpha-factors). The proposed methodology is applied to various challenging gas injection problems. We compare our upscaling method with standard upcaling techniques for compositional simulation, and we show improvements, both in terms of accuracy and computational eficiency, of the new approach.
机译:油藏的组成模拟对于准确表示与近可混溶的气体注入过程相关的物理学的准确表示。使用微尺度的地理细胞模型执行模拟是计算昂贵的;结果,需要用于组成流动的可靠上升方法。与黑油模型相比,热力学相行为与与组成局部相关联的子网格异质性之间的相互作用构成了升高的显着额外的挑战。我们介绍了一个新的框架,以高档多组分,多相组成位移,具有特殊的衰减,以准确表示粗略网格上的微尺相位行为。我们使用大规模保守配方,并为每个阶段引入较高的摩尔迁移率。这些上部升高的流动功能占亚级绝对和相对渗透性变化,以及压缩性EFIEcts。它们还纠正 - 用于粗略电网级别的数值分散效率。热力相位行为的上升如下进行。我们假设瞬时热力学平衡在ΔNe级有效,我们得出粗尺方程,其中热力学相行为不一定在平衡处。与局部平衡的偏差可能是由于不同的绕过机制,例如指法和沟道。结果,两相中的组件的抗真菌可能不等于粗略尺度,并且该偏差由粗级热力学功能量化。我们证明,这些上部功能可以被解释为对细量的平衡相空间的转换,以对类似形状的改进区域,但是具有倾斜的扎线。然后,我们描述了如何将非平衡粗标度行为转换为广泛使用的传输组合(α因子)。所提出的方法适用于各种挑战气体注入问题。我们将采用标准升高技术进行比较,用于组建模拟的标准升级技术,并在准确性和计算效能方面显示出新方法的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号