首页> 外文会议>Society of Petroleum Engineers Reservoir Simulation Symposium >Deflation AMG Solvers for Highly III-Conditioned Reservoir Simulation Problems
【24h】

Deflation AMG Solvers for Highly III-Conditioned Reservoir Simulation Problems

机译:通货紧缩AMG求解器,用于高度调节的储层模拟问题

获取原文

摘要

In recent years, deflation methods have received increasingly particular attention as a means to improving the convergence of linear iterative solvers. This is due to the fact that deflation operators provide a way to remove the negative effect that extreme (usually small) eigenvalues have on the convergence of Krylov iterative methods for solving general symmetric and non-symmetric systems. In this work, we use deflation methods to extend the capabilities of algebraic multigrid (AMG) for handling highly non-symmetric and indefinite problems, such as those arising in fully implicit formulations of multiphase flow in porous media. The idea is to ensure that components of the solution that remain unresolved by AMG (due to the coupling of roughness and indefiniteness introduced by different block coefficients) are removed from the problem. This translates to a constraint to the AMG iteration matrix spectrum within the unit circle to achieve convergence. This approach interweaves AMG (V, W or V-W) cycles with deflation steps that are computable either from the underlying Krylov basis produced by the GMRES accelerator (Krylov-based deflation) or from the reservoir decomposition given by high property contrasts (domain-based deflation). This work represents an efficient extension to the Generalized Global Basis (GGB) method that was recently proposed for the solution of the elastic wave equation with geometric multigrid and an out-of-core computation of eigenvalues. Hence, the present approach offers the possibility of applying AMG to more general large-scale reservoir settings without further modifications to the AMG implementation or algebraic manipulation of the linear system (as suggested by two-stage preconditioning methods). Promising results are supported by a suite of numerical experiments with extreme permeability contrasts.
机译:近年来,放气方法因提高线性迭代求解器的收敛而越来越特别地受到特别关注。这是由于通货膨胀运营商提供了一种方法来消除极端(通常小)特征值对求解一般对称和非对称系统的Krylov迭代方法的收敛性的负面影响。在这项工作中,我们使用通货紧缩方法来扩展代数MultiGrid(AMG)的能力来处理高度非对称和无限性问题,例如在多孔介质中完全隐含的多相流动制剂产生的那些。该思想是确保从问题中移除剩下的剩下的溶液的组件(由于粗糙度和由不同块系数引入的粗糙度和粗糙度)的耦合)被移除。这转化为单位圆内的AMG迭代矩阵频谱的约束,以实现收敛。这种方法与可通过GMRES加速器(基于Krylov基放气)产生的底层Krylov基础或由高性能对比度给出的储存分解(基于域的通缩)产生的底层Krylov基础(基于域的通货紧缩)来互通步骤)。该工作代表了最近提出的用于溶液与几何多物体的弹性波方程和特征值的核心计算的弹性波方程解的概念扩展(GGB)方法的有效扩展。因此,本方法提供了将AMG应用于更一般的大规模储层设置的可能性,而无需进一步修改线性系统的AMG实现或代数操作(如两级预处理方法所示)。有希望的结果由具有极端渗透率对比的数值实验支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号