首页> 外文会议>Conference on Semiconductor and Organic Optoelectronic Materials and Devices >Optimizing organic optoelectronic materials in both space and energy/time domains
【24h】

Optimizing organic optoelectronic materials in both space and energy/time domains

机译:在空间和能量/时间域中优化有机光电材料

获取原文

摘要

Optimizations of organic/polymeric optoelectronic materials and devices in both space and energy/time domains have been studied, both experimentally and theoretically, in order to achieve high efficiency photoelectric conversion. Specifically, at spatial domain, a 'tertiary' block copolymer supra-molecular nano structure has been designed, and a series of -DBAB- type of block copolymers, where D is a conjugated donor block, A is a conjugated acceptor block, and B is a non-conjugated and flexible bridge unit, have been synthesized, characterized, and preliminarily examined for photoelectric conversions. In comparison to simple donor/acceptor (D/A) blends, -DBAB- block copolymers exhibited much better photoluminescence quenching and photoconductivity. These are mainly attributed to improvement in spatial domain for charge carrier generation and transportation in -DBAB- block copolymers then in simple D/A blends. In materials energy levels and electron transfer dynamic regime, theoretical analysis revealed that, the photo (or thermal) excitation induced charge separation appears to be most efficient when the corresponding donor/acceptor frontier orbital level offset is equal to the sum of the charge separation reorganization energy and the exciton binding energy. Other donor/acceptor frontier orbital energy offsets were also identified where the charge recombination becomes most severe, and where the charge separation rate constant over charge recombination rate constant become largest. This dynamically favored charge separation mechanism is also proposed to explain the general 'doping' induced charge carrier generation. Implications of these findings and future approaches are also discussed in order to achieve inexpensive, lightweight, flexible, and high efficiency 'plastic' solar cells or photo detectors.
机译:的有机/聚合光电子材料与在空间和能量设备的优化/时间域进行了研究,这两个实验和理论上,为了实现高效率的光电转换。具体而言,在空间域中,一个“叔”嵌段共聚物超分子结构的纳米已经设计,以及一系列-DBAB-型嵌段共聚物的,其中d是共轭供体块的,A是共轭受体嵌段,和B是一种非共轭的和灵活的桥接单元,已经合成,其特征在于,初步检查光电转换。相比于简单的供体/受体(d / A)的共混物,-DBAB-嵌段共聚物表现出更好的光致发光猝灭和光电导性。这些主要是归因于改进用于电荷载体产生和运输空间域中在-DBAB-嵌段共聚物然后在简单d / A混合物。在材料的能量水平和电子转移动态制度,理论分析表明,光(或热)激发诱导的电荷分离似乎是最有效的,当相应的供体/受体前沿轨道能级偏移量等于所述电荷分离重组的总和能和激子结合能。其他供体/受体前沿轨道能量偏移也被确认,其中电荷重组成为最严重,并且其中电荷分离速率常数超过电荷重组速率常数成为最大的。此动态青睐电荷分离机构也提出来解释一般“掺杂”感应电荷载流子的产生。这些研究结果和未来的方法的影响,以便实现便宜,重量轻,柔性,和高效率“塑料”太阳能电池或光检测器进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号