首页> 外文会议>Materials Science Technology Conference >The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications
【24h】

The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications

机译:用于汽车应用新型Fe-Mn-C奥氏体钢的开发

获取原文

摘要

The current strong demand for vehicle lightening from the automobile sector requires flat carbon steel manufacturers to develop new advanced grades capable of fulfilling the increasingly stringent technical requirements of this market. Two basic approaches are possible: centre dot short term strategies for incremental improvements in the mechanical properties of existing products which can then be produced in thinner gauge strips with equivalent functional properties, centre dot longer term solutions involving the development of breakthrough products such as ultra high strength ductile austenitic steels or low-density steels alloyed with light elements (Al, Mg, Si). Arcelor is actively pursuing both these avenues of research. Restricting the discussion to the second point, it is clear that there are many technical hurdles and conflicting requirements to be overcome in order to produce a marketable product. Arcelor Research, in conjunction with TKS, has recently developed an ultra high strength Fe-Mn-C austenitic steel with excellent formability for automotive applications. The X-IP~(TM) 1000 steel composition is optimised to provide the best compromise in ultimate tensile strength (>1000MPa) and total elongation (>50 percent) at room temperature. These properties are achieved through the optimisation of the TWIP (TWinning Induced Plasticity) effect by careful control of the stacking fault energy (SFE) and the final microstructure. The austenite matrix is fine grained (grain size <10 mu m for hot strips and <3 mu m for cold strips), contains little or no cementite and is exempt from martensitic transformations under cold working. The steel can be processed on conventional industrial lines (continuous casting, hot and cold rolling and continuous annealing) in a wide range of formats. In this paper we present the factors that determine the choice of composition (phase stability diagrams and SFE modelling) and we describe the evolution of the microstructure at different stages in the production process. The relationship between the microstructure and the final mechanical properties is discussed. X-IP steel is the subject of a common research and development program launched by ARCELOR and TKS in February 2005.
机译:当前对汽车领域的强劲需求从汽车领域延长需要扁平碳钢制造商,开发新的先进等级,能够满足该市场日益严格的技术要求。两种基本方法是可能的:中央点短期策略,用于递增的现有产品的力学性能,然后可以在具有等同功能特性的较薄量条带中生产,中心点长期解决方案,涉及超高的突破性产品的开发强度延性奥氏体钢或低密度钢与轻质元素(Al,Mg,Si)合金化。 Arcelor正在积极追求这些研究的途径。将讨论限制在第二点,很明显,要克服许多技术障碍和相互冲突的要求,以生产可销售产品。 Arcelor Research与TKS结合,最近开发了超高强度Fe-Mn-C奥氏体钢,具有优异的汽车应用的可成形性。优化X-IP〜(TM)1000钢组合物,可在室温下提供最终拉伸强度(> 1000MPa)的最佳折衷方案,并在室温下进行总伸长率(> 50%)。通过仔细控制堆叠故障能量(SFE)和最终微观结构来实现这些性能通过优化TWIP(孪晶诱导的可塑性)效果来实现。奥氏体基质是细粒颗粒(晶粒尺寸<10μm用于热条带,对于冷带,冷条),含有很少或没有渗碳石,并免于冷水下的马氏体转变。钢可以在各种格式的常规工业生产线(连续铸造,冷热和冷轧和连续退火)上加工。在本文中,我们介绍了确定组合物(相位稳定性图和SFE建模)的选择的因素,并且我们描述了在生产过程中不同阶段的微观结构的演变。讨论了微观结构与最终机械性能之间的关系。 X-IP钢铁是2005年2月由Arcelor和TKS推出的共同研究和开发计划的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号