首页> 外文会议>Conference on Commercial/Civil Next Generation Space Transportation >Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems
【24h】

Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

机译:散热器热管与碳 - 碳翅片和空间核反应堆电力系统的铠装

获取原文
获取外文期刊封面目录资料

摘要

Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor (~ 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680–720 K, the rubidium heat pipes radiator is best at 720–800 K, while the potassium heat pipes radiator is the best performer and lightest at higher temperatures ≥800 K.
机译:正在开发空间反应堆电力系统的技术,以使未来NASA的未来任务在未来十年初探索太阳系中最远的行星。这些电力系统的能量转换技术的选择需要横跨宽范围的散热器温度,从350 k到800 K.带有碳 - 碳翅片和铠装的热管是这些散热器的首选,因为固有的冗余和有效的展开并在相对较小的质量罚球中排斥废物进入空间。在本文中提出并比较了具有铯,铷和钾加工流体的散热器热管的性能结果和特异性散热物。热管以普遍操作限制的40%(设计边缘为60%),通常是Sonic和/或毛细管限制。碳 - 碳翅片的厚度为0.5mm,但宽度变化,蒸发器和冷凝器部分分别为0.15和1.35米长。 400目的芯和热管薄金属壁是钛,碳 - 碳铠装(〜2mm厚)提供结构强度和防止菱形影响。 D形散热器热管的横截面面积优化以最小质量。由于钾的蒸气压低,其非常高的数字(FOM),散热器钾热管是800 k高于800 k的最佳表演者,其中声音限制不再是一个问题。另一方面,铷热管受到低于762k的声音极限和较高温度下的毛细管限制。铯热管的这两个限制之间的过渡温度在724k的较低温度下发生,因为铯具有比铷的较低的FOM。本结果表明,在设计边缘为60%,铯热管散热器最佳,铷热管散热器最好在720-800 k,而钾热管散热器是最好的表演者在较高温度下最轻≥800k。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号