首页> 外文会议>Heat Transfer Conference >COUPLED HEAT TRANSFER PHENOMENA IN CAVITATING BUBBLE DYNAMICS
【24h】

COUPLED HEAT TRANSFER PHENOMENA IN CAVITATING BUBBLE DYNAMICS

机译:空化泡沫动力学中的耦合传热现象

获取原文
获取外文期刊封面目录资料

摘要

Cavitation is an incipient technique that finds application in advanced medicine, engineering and chemistry, where the high temperature and pressure of the cavitating bubbles are used as micro-reactors. However, present models to study the dynamics of cavitating bubbles have ignored important aspects of the transport phenomena, such as the actual gas and liquid thermal boundary layers across the bubble interphase. This leads to gross inaccuracies in estimating the heat transfer between the liquid and the gas, and to wrong interphase temperatures. In order to depth the understanding of this complex phenomena, a more realistic model has been developed, which includes the radial variation of the flow variables. In this model, the heat transfer across the bubble interphase is given directly by the coupled gas and liquid boundary layers. Other physical phenomena, such as, mass transfer and chemical reactions, have also been accounted for. The new model is able to predict the dynamics and internal state of the bubble with more accuracy than existing methods, allowing a more comprehensive knowledge of the bubble physics. In particular, it has been shown that the bubble dynamics depends heavily on the pressure difference across the bubble interphase. The predicted maximum temperature at the center of the bubble is slightly larger than that given by uniform models, whereas the calculated interphase temperature has been reduced to experimental values. Finally, the radial dependence of the temperature, pressure and chemical concentrations allows a more detailed analysis of the reaction processes occurring inside the bubble.
机译:空化是一种初期技术,可在先进的药物,工程和化学中发现应用,其中空化气泡的高温和压力用作微反应器。然而,目前用于研究空腔气泡的动态的模型已经忽略了运输现象的重要方面,例如跨越气泡间的实际气体和液体热边界层。这导致估计液体和气体之间的传热以及错误的间隔温度的毛显性。为了深入对这种复杂现象的理解,已经开发了更现实的模型,其包括流量变量的径向变化。在该模型中,通过耦合的气体和液面边界层直接给出跨越气泡间的热传递。也核准了其他物理现象,例如传质和化学反应。新模型能够以比现有方法更精确地预测气泡的动态和内部状态,允许更全面地了解泡沫物理学。特别地,已经表明,气泡动力学在很大程度上取决于气泡间相互作用的压力差。气泡中心的预测的最大温度略大于均匀模型给出的最大温度,而计算的间间温度已经降低到实验值。最后,温度,压力和化学浓度的径向依赖性允许更详细地分析在气泡内发生的反应过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号