首页> 外文会议>Heat Transfer Conference >MICROSCOPIC EFFECTIVE MEDIUM MODEL FOR THERMAL CONDUCTIVITY OF TWO DIMENSIONAL NANO-POROUS AND MICRO-POROUS MEDIA
【24h】

MICROSCOPIC EFFECTIVE MEDIUM MODEL FOR THERMAL CONDUCTIVITY OF TWO DIMENSIONAL NANO-POROUS AND MICRO-POROUS MEDIA

机译:用于二维纳米多孔和微孔介质的导热率的显微介质模型

获取原文

摘要

Two-dimensional Nano-porous (NP) and micro-porous (MP) materials are currently used in a variety of applications{sup}(1-8) which require the knowledge of the thermal conductivity (k). In NP and MP materials, two pertinent length scales determine the phonon thermal conductivity: 1) the ratio of inter-pore distance, δ, and the mean free path (m.f.p.) of phonons, l, 2) the ratio of the pore diameter, d, and the m.f.p. of phonons. This is schematically shown in Fig. 1. In the traditional diffusion-approximation (macroscopic models) based models (l d, δ) for the thermal conductivity of porous materials, the effective thermal conductivity, k{sub}(eff), of the porous material for a given shape of the pores and direction of the heat flow is only a function of the volume fraction (Φ) of the pores. Therefore, in the diffusion approximation, k{sub}(eff) can be written as k{sub}(eff) = k{sub}m f (Φ) (1) where k{sub}m is the thermal conductivity of the host medium. Our focus is on cylindrical pores. We only consider the heat flow in the transverse direction as shown in Fig. 1a. For example, if Φ <40%, Maxwell-Garnett effective medium model (MG EMM) can be used{sup}9. f(Φ) for MG EMM is given by{sup}10 f(Φ)=1-Φ/1+Φ (2) Experimental data on two-dimensional micro-porous silicon made of cylindrical pores{sup}13 have shown that the macroscopic model given by Eq. (1) grossly over predicts k{sub}(eff) of the porous materials. In MP and NP materials, the phonon transport is ballistic in nature because of the dominant scattering of phonons from the pore boundaries. Ballistic transport becomes dominant when m.f.p is comparable to or larger than d and δ. In this regime, the Boltzmann Transport Equation (BTE) must be solved without invoking the diffusion approximation. Solving the BTE for such a complex network of pores is a challenging task, and a few previous works exist{sup}15 where BTE was solved numerically under various simplifying assumptions regarding the geometry and the arrangement of the pores. Both of these investigations assumed rectangular pores for two-dimensional composite or cubical pores for three-dimensional composites; however, in reality, these pores are never so simple in their geometry. Typically, these pores are cylindrical in shape for two-dimensional composites{sup}13 and nearly spherical in shape for three-dimensional composites{sup}5. The solution of BTE for the multitude of non-planar pores, although achievable, will be a very tedious task.
机译:二维纳米多孔(NP)和微多孔(MP)材料目前用于需要对导热系数(K)的知识的各种应用{SUP}(1-8)。在NP和MP材料,两个相关的长度尺度确定声子的热导率:1)孔间的距离,δ之比,和声子的平均自由程(MFP)中,l,2)孔直径的比率, D,和MFP声子。这在图1中示意性地示出。在传统的扩散近似(宏观模型)的基于模型(L D,δ),用于多孔材料的导热率,有效的导热系数,K {ef}(EFF),对于给定形状的孔和热流方向的多孔材料仅是孔的体积分数(φ)的函数。因此,在扩散近似,k {sub}(eff)可以被写为k {sub}(eff)= k {sub} mf(φ)(1),其中k {sub} m是主机的导热率中等的。我们的重点是圆柱形毛孔。我们仅考虑横向的热流,如图2所示。1A。例如,如果φ<40%,可以使用Maxwell-Garnett有效介质模型(MG EMM){Sup} 9。用于Mg EMM的F(φ)由{sup} 10 f(φ)= 1-φ/ 1 +φ(2)关于由圆柱形孔制成的二维微多孔硅的实验数据{sup} 13显示了eq给出的宏观模型。 (1)粗略地预测多孔材料的k {sub}(eff)。在MP和NP材料中,声子传输本质上是弹性的,因为来自孔隙界的声子的显性散射。当M.F.P与D和δ相当的时,弹道传输变得优势。在该制度中,必须解决Boltzmann传输方程(BTE)而不调用扩散近似。解决这种复杂网络的BTE是一种具有挑战性的任务,并且存在一些以前的作品{SUP} 15,其中在各种简化的关于几何形状和孔的布置的各种简化假设下进行了数字地解决了BTE。这两项研究都假定用于三维复合材料的二维复合材料或立方体孔的矩形孔隙;然而,实际上,这些毛孔在几何形状中从未如此简单。通常,这些孔的形状为二维复合材料{SUP} 13,以及用于三维复合材料的几乎球形的形状{SUP} 5。 BTE为众多非平面毛孔的解决方案,虽然是可实现的,但将是一个非常繁琐的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号