首页> 外文会议>Heat Transfer Conference >PRECONDITIONING AND SOLVER OPTIMIZATION IDEAS FOR RADIATIVE TRANSFER
【24h】

PRECONDITIONING AND SOLVER OPTIMIZATION IDEAS FOR RADIATIVE TRANSFER

机译:辐射转移的预处理和求解优化思路

获取原文

摘要

In this paper, radiative transfer and time-dependent transport of radiation energy in participating media are modeled using a first-order spherical harmonics method (P{sub}1) and radiation diffusion. Partial differential equations for P1 and radiation diffusion are discretized by a variational form of the equations using support operators. Choices made in the discretization result in a symmetric positive definite (SPD) system of linear equations. Modeling multidimensional domains with complex geometries requires a very large system of linear equations with 10s of millions of elements. The computational domain is decomposed into a large number of subdomains that are solved on separate processors resulting in a massively parallel application. The linear system of equations is solved with a preconditioned conjugate gradient method. Various preconditioning techniques are compared in this study. Simple preconditioning techniques include: diagonal scaling, Symmetric Successive Over Relaxation (SSOR), and block Jacobi with SSOR as the block solver. Also, a two-grid multigrid-V-cycle method with aggressive coarsening is explored for use in the problems presented. Results show that depending on the test problem, simple preconditioners are effective, but the more complicated preconditioners such as an algebraic multigrid or the geometric multigrid are most efficient, particularly for larger problems and longer simulations. Optimal preconditioning varies depending on the problem and on how the physical processes evolve in time. For the in situ preconditioning techniques-SSOR and block Jacobi-a fuzzy controller can determine the optimal reconditioning process. Discussions of the current knowledge-based controller, an optimization search algorithm, are presented. Discussions of how this search algorithm can be incorporated into the development of data-driven controller incorporating clustering and subsequent construction of the fuzzy model from partitions are also discussed.
机译:在本文中,使用一阶球谐波方法(P {Sub} 1)和辐射扩散来建模参与介质中的辐射能量的辐射传递和时间依赖于参与介质的运输。通过使用支撑操作员的方程的变化形式离散化P1和辐射扩散的部分微分方程。在离散化方面做出的选择导致了线性方程的对称正定(SPD)系统。具有复杂几何形状的多维域建模需要一个非常大的线性方程系统,具有10多个数百万元件。计算域被分解成大量在单独的处理器上解决的子域,导致大规模并行应用。用预处理的共轭梯度法解决方程线性系统。在该研究中比较了各种预处理技术。简单的预处理技术包括:对角缩放,在放松(SSOR)上连续相对的对称,以及带有SSOR作为块求解器的锁定Jacobi。此外,探索了一种具有积极粗化的双栅格多基体-V循环方法,以用于所呈现的问题。结果表明,根据测试问题,简单的预处理器是有效的,但是更复杂的预处理器,例如代数多重资源件或几何多重态度最有效,特别是对于更大的问题和较长的模拟。最佳预处理因问题而异,以及物理过程如何及时发展。对于原位预处理技术-SSOR和块Jacobi-A模糊控制器可以确定最佳再现过程。介绍了当前知识的控制器,一个优化搜索算法的讨论。还讨论了如何将该搜索算法结合到包含聚类的数据驱动控制器的开发中的讨论以及从分区的模糊模型的群集构建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号