首页> 外文会议>American Geophysical Union >Applying Stable Isotope Fractionation Theory to New Systems
【24h】

Applying Stable Isotope Fractionation Theory to New Systems

机译:将稳定的同位素分馏理论应用于新系统

获取原文

摘要

A basic theoretical understanding of stable isotope fractionations can help researchers plan and interpret both laboratory experiments and measurements on natural samples. The goal of this chapter is to provide an introduction to stable isotope fractionation theory, particularly as it applies to mass-dependent fractionations of non-traditionai elements and materials. Concepts are illustrated using a number of worked examples. For most elements, and typical terrestrial temperature and pressure conditions, equilibrium isotopic fractionations are caused by the sensitivities of molecular and condensed-phase vibrational frequencies to isotopic substitution. This is explained using the concepts of vibrational zero-point energy and the partition function, leading to Urey's (1947) simplified equation for calculating isotopic partition function ratios for molecules, and Kieffer's (1982) extension to condensed phases. Discussion will focus on methods of obtaining the necessary input data (vibrational frequencies) for partition function calculations. Vibrational spectra have not been measured or are incomplete for most of the substances that Earth scientists are interested in studying, making it necessary to estimate unknown frequencies, or to measure them directly. Techniques for estimating unknown frequencies range from simple analogies to well-studied materials to more complex empirical force-field calculations and ab initio quantum chemistry. Mossbauer spectroscopy has also been used to obtain the vibrational properties of some elements, particularly iron, in a variety of compounds. Some kinetic isotopic fractionations are controlled by molecular or atomic translational velocities; this class includes many diffusive and evaporative fractionations. These fractionations can be modeled using classical statistical mechanics. Other kinetic fractionations may result from the isotopic sensitivity of the activation energy required to achieve a transition state, a process that (in its simplest form) can be modeled using a modification of Urey's equation (Bigeleisen 1949).
机译:对稳定同位素分级的基本理论理解可以帮助研究人员计划和解释实验室实验和对天然样品的测量。本章的目标是提供稳定同位素分级理论的介绍,特别是因为它适用于非传统元素和材料的质量依赖性分级。使用许多工作示例进行说明的概念。对于大多数元素和典型的陆地温度和压力条件,平衡同位素分级是由分子和冷凝相振动频率与同位素取代的敏感性引起的。这是使用振动零点能量和分区功能的概念来解释的,导致urey(1947)简化方程,用于计算分子的同位素分配功能比,以及Kieffer(1982)延伸到凝聚相。讨论将侧重于获得用于分区功能计算的必要输入数据(振动频率)的方法。振动光谱尚未测量或对地球科学家对研究的大多数物质不完整,使得有必要估计未知的频率,或直接测量它们。估计未知频率范围的技术从简单的模拟到富裕的材料到更复杂的经验力场计算和AB Initio量子化学。母脂蛋白光谱也被用于获得各种化合物中一些元素,特别是铁的振动性质。一些动力学同位素分级由分子或原子平移速度控制;该类包括许多扩散和蒸发分馏。这些分级可以使用经典统计力学进行建模。其他动力学分馏可能是由实现过渡状态所需的激活能量的同位素敏感性,可以使用urey等式的修改来建模(以其最简单的形式)的过程(Bigeleisen 1949)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号