首页> 外文会议>American Chemical Society National Meeting >QUATERNARY PHOSPHONIUM-BASED HYDROXIDE EXCHANGE MEMBRANES FOR POSSIBLE APPLICATIONS FN SOLAR ENERGY CONVERSION AND STORAGE
【24h】

QUATERNARY PHOSPHONIUM-BASED HYDROXIDE EXCHANGE MEMBRANES FOR POSSIBLE APPLICATIONS FN SOLAR ENERGY CONVERSION AND STORAGE

机译:季鏻氢氧化物交换膜,用于可能的应用FN太阳能转换和储存

获取原文

摘要

As the ultimate power source, solar energy is clean, abundant, and free. Direct solar electricity (solar cell or solar thermal) makes up an important portion of the total energy supply of the US today, and it is expected to grow rapidly in the future. The intrinsic intermittency of solar energy brings the challenging problems in energy conversion and storage. By switching the working ion in polymer electrolytes from proton to hydroxide (OH~-), hydroxide exchange membranes (HEMs) have shown the promise to significantly reduce costs, the top commercialization barrier, for a number of electrochemical energy conversion/storage devices including fuel cells, electrolyzers, redox flow batteries, and solar hydrogen generators. For instance, the simple coupling of a fuel cell and an electrolyzer could offer a long-term (months to years) storage solution using H2 as the storage medium; and the redox flow batteries could serve the middle-term (hours to days) storage needs. Different from the conventional proton exchange membranes (PEMs), HEMs have the ability to work with non-precious yet active metal electrocatalysts and themselves are also inexpensive . Equally importantly, the HEMs are completely free from the problems of electrolyte leakage or metal (bi)carbonate formation that the traditional liquid base electrolytes usually bring. The properties of HEMs such as conductivity, solubility and affinity with electrocatalysts directly and significantly impact the performance of electrochemical devices. HEMs are fundamentally controlled by the hydroxide-conducting functional group. For example, the conventional quaternary ammonium hydroxide (QAOH) functional group tends to make their HEMs suffer from low conductivity and poor solubility, limiting the performance of HEM fuel cells.
机译:作为最终的电源,太阳能清洁,丰富,自由。直接太阳能电(太阳能电池或太阳能热量)占今天美国总能源供应的重要部分,预计将来会迅速增长。太阳能的内在间歇性带来了能量转换和储存中的挑战性问题。通过将来自质子的聚合物电解质中的工作离子切换到氢氧化物(OH〜 - ),氢氧化物交换膜(HEMS)已经表明了许多电化学能量转换/存储装置,可以显着降低成本,顶级商业化屏障,包括燃料细胞,电解器,氧化还原流量电池和太阳能氢气发生器。例如,燃料电池和电解器的简单耦合可以使用H2作为存储介质提供长期(几年)的储存解决方案;氧化还原流电池可以服务中期(小时至天数)存储需求。与传统的质子交换膜(PEMS)不同,HEMS具有与非宝贵活性的金属电催化剂合作的能力,并且本身也廉价。同样重要的是,下摆完全没有电解质泄漏或金属(BI)碳酸盐形成的问题,即传统的液体基础电解质通常带来。直接与电催化剂的电导率,溶解性和亲和力等下摆的性质直接突显地影响电化学装置的性能。下摆基本上由氢氧化物导电官能团控制。例如,常规季铵氢氧化铵(QaOH)官能团趋于使其下摆患有低导电性和较差的溶解度,限制下摆燃料电池的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号