【24h】

Spatio-Temporal Dynamics of Optical Molecular Motors

机译:光学分子电机的时空动态

获取原文

摘要

Molecular motors are multicomponent molecular structures that consume energy to induce motion and to generate forces. Their dynamics covers various time and length scales and critically depends on chemical-mechanical coupling, external forces and molecular properties such as diffusion, particle distribution and density. The complex behavior of these systems consequently offers a formidable challenge for theoretical descriptions and numerical approaches that aim to provide a computational laboratory for a fundamental analysis of the underlying interaction mechanisms as well as interpretations or to study control of the system's behavior. Coupling a linear molecular motor system to an energy supply can induce movement of the motor molecules along a filamentous structure. The complex dynamics of bound (i.e. attached to a filament) and free (i.e. diffusing in the surrounding medium) molecular motors thereby may depend on the diffusive properties of the molecules and on the excitation process driving the motor system. Our theory is therefore based on spatially dependent Fokker-Planck equations for the dynamics of bound and free motors. The model considers spatially inhomogeneous transition rates coupling the energetic sublebels of the molecules as well as spatial fluctuations and diffusion. Computational modelling of the spatio-temporal dynamics of molecular motors shows that both, molecular diffusion and bandwidth of the transition rate set an upper limit to the efficiency of the motor progression. A sufficiently small molecular diffusion as well as a thorough adjustment of transition rates lead to a regular forward propagation while for high diffusion and improperly chosen rates spatio-temporally diverging particle distributions may evolve. Suitable excitation conditions for efficient movement-control are discussed.
机译:分子马达是多组分分子结构,其消耗能量以引起运动并产生力。它们的动力学涵盖各种时间和长度,并且批判性地取决于化学机械耦合,外力和分子性质,例如扩散,颗粒分布和密度。因此,这些系统的复杂性行为为理论描述和数字方法提供了一种强大的挑战,该方法旨在为基本互动机制的基本分析提供计算实验室以及解释或研究系统行为的基本分析。将线性分子电机系统耦合到能量供应可以沿着丝状结构引起电机分子的运动。由此可以取决于分子的扩散特性和驱动电动机系统的激励处理的复杂(即灯丝)和自由(即散开)和自由(即,即散开)的动态。因此,我们的理论是基于空间依赖的Fokker-Planck方程,了解有限和自由电机的动态。该模型考虑了空间不均匀的过渡率,耦合分子的能量坯和空间波动和扩散。分子电机时空动态的计算建模表明,过渡率的分子扩散和带宽设定了电动机进展效率的上限。足够小的分子扩散以及过渡速率的彻底调整导致正向上向前传播,同时高扩散和不正确的速率时空发散的颗粒分布可以发展。讨论了有效运动控制的合适激励条件。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号