首页> 外文会议>International workshop on planetary probe atmospheric entry and descent trajectory analysis and science >THERMAL PROTECTION SYSTEM TECHNOLOGY AND FACILITY NEEDS FOR DEMANDING FUTURE PLANETARY MISSIONS
【24h】

THERMAL PROTECTION SYSTEM TECHNOLOGY AND FACILITY NEEDS FOR DEMANDING FUTURE PLANETARY MISSIONS

机译:热保护系统技术和设施需要苛刻的未来行星任务

获取原文

摘要

NASA has successfully launched numerous science missions to inner and outer planets in our solar system of which the most challenging were to Venus and Jupiter and the knowledge gained from those missions have been invaluable yet incomplete. Future missions will be built on what we have learned from the past missions but they will be more demanding from both the science as well as the mission design and engineering perspectives. The Solar System Exploration Decadal Survey (SSEDS) produced for NASA by the National Research Council identified a broad range of science objectives many of which can only be satisfied with atmospheric entry probes. The SSEDS recommended new probe/lander missions to both Venus and Jupiter. The Pioneer-Venus probe mission was launched in August 1978 and four probes successfully entered the Venusian atmosphere in December 1978. The Galileo mission was launched in October 1989 and one probe successfully entered the Jovian atmosphere in December 1995. The thermal protection system requirements for these two missions were unlike any other planetary probes and required fully dense carbon phenolic for the forebody heat shield. Developing thermal protection systems to accomplish future missions outlined in the Decadal Survey presents a technology challenge since they will be more demanding than these past missions. Unlike Galileo, carbon phenolic may not be an adequate TPS for a future Jupiter multiprobe mission since non-equatorial probes will enter at significantly higher velocity than the Galileo equatorial probe and the entry heating scales approximately with the cube of the entry velocity. At such heating rates the TPS mass fraction for a carbon phenolic heat shield would be prohibitive. A new, robust and efficient TPS is required for such probes. The Giant Planet Facility (GPF), developed and employed during the development of the TPS for the Galileo probe was dismantled after completion of the program. Furthermore, flight data from the Galileo probe suggested that the complex physics associated with the interaction between massive ablation and a severe shock layer radiation environment is not well understood or modeled. The lack of adequate ground test facilities to support the development and qualification of new TPS materials adds additional complexities. The requirements for materials development, ground testing and sophisticated modeling to enable these challenging missions are the focus of this paper.
机译:美国宇航局已成功推出了许多科学任务到我们的太阳系中的内外行星,其中最具挑战性最具挑战性的是维纳斯和木星,这些特派团获得的知识得到了宝贵的,但却不完整。将建立未来的任务,建立在过去的任务中学到的内容,但他们将从科学以及使命设计和工程观点中更加苛刻。国家研究委员会为美国国家航空航天局制作的太阳系勘探调查(SSEDS)确定了广泛的科学目标,其中许多可能只能满足大气进入探针。 SSEDS推荐给金星和木星的新探针/兰德任务。 1978年8月的先锋 - 维纳斯探针使命是在1978年12月成功进入了Venusian氛围的四个探针。伽利略任务于1995年10月成功推出了探针。这些探针在1995年12月成功进入了Jovian氛围。这些探测器两个任务与任何其他行星探针不同,并且需要完全致密的碳酚类用于前置热屏蔽。开发热保护系统,以实现截止调查中概述的未来任务呈现出技术挑战,因为它们比这些过去的任务更苛刻。与伽利略不同,碳酚醛可能不是未来的木星多曲面任务的足够TPS,因为非赤道探针将比伽利略赤道探针的速度明显更高,并且进入加热大致与入口速度的立方体大致相比。在这种加热速率下,碳酚类隔热罩的TPS质量级分是令人畏惧的。这种探针需要一种新的,稳健和有效的TPS。在计划完成后,在伽利略探针的TPS开发期间开发和使用的巨大行星设施(GPF)被拆除。此外,来自伽利略探针的飞行数据表明,与大规模消融和严重的冲击层辐射环境之间的相互作用相关的复杂物理并不能理解或建模。缺乏足够的地面测试设施来支持新TPS材料的开发和资格增加了额外的复杂性。材料开发的要求,地面测试和复杂的建模使这些挑战性的特派团是本文的重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号