首页> 外文会议>Symposium of International Rubber Conference >New ultra high cis polybutadiene technology through a novel neodymium catalyst and its vulcanizate properties
【24h】

New ultra high cis polybutadiene technology through a novel neodymium catalyst and its vulcanizate properties

机译:新型钕催化剂及其硫化酸盐性能新的超高CIS聚丁二烯技术

获取原文

摘要

Ultra high cis polybutadiene is prepared in 1,3-butadiene polymerization by the Nd-catalyst of Nd(neodecanoate)_3(ND)/ AlEt_2Cl/Al(iBu)_3 in the rubber industry. However, the catalytic activity remains low, and the reason is unclear. According to our matrix-assisted-laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectroscopic study, ND is a mixture of various oligomeric and hy-drated compounds. The hydrated oligomeric structure would mainly lower the catalytic activity. In order to design a better Nd-catalyst, Nd(neodecanoate)_3 (neodecanoic acid) (NDH) was designed to satisfy the requisite of anhydrous and monomeric structure. NDH was prepared through ligand-exhange method between neodymium acetate and neodecanoic acid in an organic medium. NDH was identified and characterized with infrared (IR), MALDI-TOF mass, and synchrotron X-ray absorption spectroscopies (XAS), and with computer simulations. Weakly bound neodecanoic acid with the carbonyl peak at ca. 1 670 cm~(-1), and carboxylate anion coordinated to Nd at ca. 1 600 cm~(-1) were observed in the IR study. The molecular ion peak (m/z. =838.7) in MALDI mass and the pronounced absorption edge at 6216 eV in the Nd-Lm XANES (X-ray absorption near edge structure) spectra, respectively, support its monomeric structure. NDH is of monomeric structure satisfying the 8-coordination number in the optimized structure by molecular mechanics. A significant improvement in the catalytic activity for 1,3-butadiene polymerization is achieved through NDH. The Nd-catalyst shows a high activity (2.5 x 10~6 g/Nd mol·h) and produces polybutadiene with 98% cis content. The living active-center of the Nd-catalyst is characterized by XANES (X-ray absorption near edge structure) and UV-visible spectroscopies, and fully optimized by density functional method (B3LYP/CEP-31G), in which neodymium(III) is coordinated with carboxylate, allylic active end, penultimate double bond, and chloride. The bond distances are Nd-C_1 2.586 A, Nd-C_4 2.741 A, Nd-C_5 2.738 A, Nd-Cl 2.651 A, and Nd-O_1 2.167 A, respectively. The "livingness" in the polymerization is also studied using frontier orbital analysis. The HOMO electron density of the Nd catalyst is concentrated on the mostly p orbital of the C_α and C_γ atoms, and the electron density of LUMO conversely is concentrated on the 4f and 5d orbitals of Nd atom. In other words, the C_α atom of the chain-end nucleophilically attacks the C_1 atom (LUMO) of 1,3-butadiene resulting in C—C bond formation while simultaniously Nd electrophilically attacks the C_4 atom (HOMO) of 1,3-butadiene resulting in Nd-C bond formation. The positive atomic charge (+1.09) on Nd and the negative atomic charge (- 0.56) on C_α support the strong ionic character in good agreement of the spectroscopic results. The frontier orbitals of the Ni catalyst also studied, which are different from those of the Li and Nd based catalysts. The HOMO of the Ni catalyst has mostly the d-orbital (Ni) character while the LUMO has the p-orbital (C_α and C_γ atoms) as well as the d-orbital (Ni) character. The π-butenyl coordination at the Ni catalyst is η~1-type but those of the Nd and Li catalysts are η~3. The atomic charge (+0.003) on the Ni atom and the atomic charge (-0.14) on C_α of the Ni catalyst are much lower than those of the Nd catalyst (Nd +1.09, C_α - 0.56).
机译:通过橡胶工业中的Nd(Neodanoate)_3(Nd)/ Alet_2Cl / Al(IBU)_3的Nd催化剂,在1,3-丁二烯聚合中制备超高CIS聚丁二烯。然而,催化活性仍然很低,原因尚不清楚。根据我们的基质辅助激光 - 解吸电离 - 飞行时间(MALDI-TOF)质谱研究,Nd是各种低聚和含氢化合物的混合物。水合低聚结构主要较低催化活性。为了设计更好的Nd催化剂,设计了Nd(Neodanoate)_3(新癸酸)(NODH)以满足无水和单体结构的必要条件。通过在有机培养基中通过乙酸核和新二己酸之间的配体 - 静脉法制备NDH。鉴定NDH,并用红外(IR),MALDI-TOF质量和同步X射线吸收光谱(XAS)和计算机仿真。弱结合的新癸酸与羰基峰在Ca. 1 670cm〜(-1),和羧酸盐阴离子协调为CA。在IR研究中观察到1 600cm〜(-1)。分子离子峰(m / z. = 838.7)在MALDI质量和在ND-LM XANES(X射线吸收附近)光谱中的6216eV处的明显吸收边缘,支持其单体结构。 NDH是通过分子机制满足优化结构中的8个配位数的单体结构。通过NDH实现1,3-丁二烯聚合的催化活性的显着改善。 ND催化剂显示出高活性(2.5×10〜6g / Nd Mol·h),并产生具有98%的CIS含量的聚丁二烯。 Nd催化剂的活性中心的特征在于Xanes(X射线吸收附近的边缘结构)和UV可见光谱,并通过密度官能法(B3LYP / CEP-31G)完全优化,其中钕(III)与羧酸盐,烯丙基活性末端,倒数二次双键和氯化物协调。键距离是ND-C_1 2.586A,ND-C_4 2.741A,ND-C_5 2.738A,ND-CL 2.651A和ND-O_1 2.167A。使用前端轨道分析还研究了聚合中的“致力”。 Nd催化剂的同性化电子密度浓缩在C_α和C_γ原子的大部分P轨道上,并且升的电子密度相反地浓缩在Nd原子的4F和5D轨道上。换句话说,链末端的C_α原子与1,3-丁二烯的C_1原子(LumO)联合,导致C-C键形成,同时Nd通过电泳攻击1,3-丁二烯的C_4原子(HOMO)导致ND-C键形成。 Nd的阳性原子电荷(+1.09)和C_α的负原子电荷( - 0.56)支持良好的光谱结果一致性的强离子特征。 Ni催化剂的前沿轨道也研究,其与Li和Nd基催化剂的催化剂不同。 Ni催化剂的HOMO主要具有D-轨道(Ni)的特征,而LUMO具有p轨道(C_α和C_γ原子)以及D-轨道(Ni)特征。 Ni催化剂的π-丁烯基配位是η〜1型,但Nd和Li催化剂的ε是η〜3的。 Ni原子上的原子电荷(+ 0.003)和Ni催化剂的C_α上的原子电荷(-0.14)远低于Nd催化剂(Nd +1.09,C_α-0.56)的那些。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号