首页> 外文会议>International Charles Parsons Turbine Conference >Characterisation of EB-PVD-Thermal Barrier Coatings Containing Lanthanum Zirconate
【24h】

Characterisation of EB-PVD-Thermal Barrier Coatings Containing Lanthanum Zirconate

机译:含镧锆酸镧的EB-PVD-热阻挡涂层的表征

获取原文

摘要

Gas turbine processes are a well developed mechanisms for converting chemical potential energy in form of fuel, to thermal energy and then to mechanical energy for example used in aircraft or generating plants or for generating electric power. Today the most suitable solution to improve the efficiency of gas turbine engines appears to be an increase of higher operating temperatures. The metallic materials used in gas turbine engines have nearly reached their upper limits of thermal stability. In the hottest regions of modern gas turbine engines, metallic materials are used at temperatures above their melting points. They can only resist because of air cooling, but as a negative side effect excessive air cooling reduces their efficiency. Therefore, there have been extensive developments of thermal barrier coatings (TBCs). The TBCs have shown great potential in improving the durability and efficiency of gas turbine engines by allowing an increase of the turbine's inlet temperature and by reducing the amount of cooling air at hot-section components. Zirconia offers the properties mentioned before plus a high coefficient of thermal expansion, that is a primary reason for the success as a thermal barrier material on metallic substrates. TBCs have been deposited by several techniques including thermal spraying, sputtering and electron beam physical vapour deposition (EB-PVD). The EB-PVD is the currently preferred technique for demanding applications because of it's special coating structure. Depending on several parameters the ceramic coatings have a columnar grain microstructure that consists of small columns separated by gaps which become smaller inside the coating. These gaps allow the important substrate expansion without the cracking or the spalling of the coat. The main problem of zirconia yttria stabilized thermal barrier coatings (YPSZ) deposited with EB-PVD is a sinter process above 1200 deg C when the columns loose their property of expansion tolerance due to a closing of their gaps. This process leads to a very fast fatigue of the thermal barrier coatings. For that reason extensive developments of new thermal barrier coatings were needed that allow an increase of turbine inlet temperatures. Investigations on some materials with perovskite, spinelle and pyrochlore structure have shown a great potential of Lanthanum zirconate (pyrochlore) as thermal barrier coating. This ceramic material has a cubic crystal structure. The project introduced today the Lanthanum zirconate coatings were deposited on Ni base Inconel Alloy 600 with a EB-PVD coating device from Leybold. The coatings were characterized by the following analytical methods: x-ray diffraction (XRD), scanning-electron microscopy (SEM), electron dispersive diffraction (EDX), Nanoindentation and thermo-cycling-test.
机译:燃气轮机工艺是一种良好的开发机构,用于将化学势能以燃料的形式转换为热能,然后在飞机或发电设备中使用或用于产生电力的机械能。如今,提高燃气轮机发动机效率的最合适的解决方案似乎是更高的操作温度的增加。用于燃气轮机发动机的金属材料几乎达到了热稳定性的上限。在现代燃气涡轮发动机的最热区域中,金属材料在其熔点之上的温度下使用。它们只能因为空气冷却而抵抗,但由于负面效果过度空气冷却降低了它们的效率。因此,热障涂层(TBCS)已经有广泛的发展。通过允许涡轮机的入口温度的增加并通过减小热段组分的冷却空气量来提高燃气涡轮机发动机的耐久性和效率,TBCS已经显着提高了燃气涡轮机发动机的耐久性和效率。氧化锆提供之前提到的属性加上高度热膨胀系数,这是在金属基材上作为热阻挡材料成功的主要原因。通过多种技术沉积了TBC,包括热喷涂,溅射和电子束物理气相沉积(EB-PVD)。 EB-PVD是目前苛刻应用的当前优选的技术,因为它是特殊的涂层结构。取决于若干参数,陶瓷涂层具有柱状晶粒微结构,其由小柱组成,由涂层内部变得更小的间隙。这些间隙允许重要的基材膨胀而没有裂缝或涂层的剥落。氧化锆yTTRIA稳定的热阻挡涂层(YPSZ)的主要问题是沉积的EB-PVD沉积的烧结工艺于1200℃以上的烧结过程,当塔由于闭合间隙而松开膨胀耐受性的性质。该过程导致热阻挡涂层的非常快速的疲劳。因此,需要进行新的热阻挡涂层的广泛发展,从而允许增加涡轮机入口温度。用钙钛矿,锭丝和辉替思结构的一些材料的研究表明,镧锆锆(Pyrochlore)的潜力很大,作为热阻挡涂层。该陶瓷材料具有立方晶体结构。本项目今天介绍的镧锆涂层涂层沉积在Ni碱基Inconel合金600上,用来自Leybold的EB-PVD涂布装置沉积。涂层的特征在于以下分析方法:X射线衍射(XRD),扫描 - 电子显微镜(SEM),电子分散衍射(EDX),纳米凸缘和热循环试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号