首页> 外文会议>Conference on Empirical Methods in Natural Language Processing >Cutting-edge Tutorial: Machine Reasoning: Technology, Dilemma and Future
【24h】

Cutting-edge Tutorial: Machine Reasoning: Technology, Dilemma and Future

机译:尖端教程:机器推理:技术,困境和未来

获取原文

摘要

Machine reasoning research aims to build inter-pretable AI systems that can solve problems or draw conclusions from what they are told (i.e. facts and observations) and already know (i.e. models, common sense and knowledge) under certain constraints. Although its "formal" definitions vary in different publications (McCarthy, 1958; Pearl, 1988; Khardon and Roth, 1994; Bottou, 2011; Ben-gio, 2019), machine reasoning methods usually share some commonalities. First, such systems are based on different types of knowledge, such as logical rules, knowledge graphs, common sense, text evidence, etc. Second, such systems use different inference algorithms to manipulate available knowledge for problem-solving. Third, such systems have good interpretability to the predictions. The developments of machine reasoning systems go through several stages. Symbolic reasoning methods represent knowledge using symbolic logic (e.g., propositional logic and first order logic) and perform inference using algorithms such as truth-table approach, inference rules approach, resolution, forward chaining and backward chaining. A major defect is that such methods cannot handle the uncertainty in data. Probabilistic reasoning methods combine probability and symbolic logic into a unified model. Such methods can deal with uncertainty, but suffer the combinatorial explosion when searching in a large discrete symbolic space. With the rapid developments of deep learning, neural reasoning methods attract much attention. Neural-symbolic reasoning methods represent knowledge symbols (such as entities, relationships, actions, logical functions and formulas) as vector or tensor representations, and allow the model to perform end-to-end learning effectively as all components are differentiable. Neural-evidence reasoning methods allow the model to communicate with the environment to acquire evidence for reasoning. As such models assume the reasoning layer is not required to be logical, both structured and unstructured data can be used as knowledge. Besides, as the interaction with the environment can be conducted multiple times, such approaches are good at solving sequential decision-making problems.
机译:机器推理研究旨在构建可以解决问题或从讲述它们的问题或得出结论(即事实和观察)并已经知道(即模型,常识和知识)在某些限制下的互相解决或得出结论。虽然其“正式”定义在不同的出版物(McCarthy,1958; Pearl,1988; Khardon and Roth,1994; Bottou,2011年; Bottou,2019),机器推理方法通常分享一些常见。首先,这样的系统基于不同类型的知识,例如逻辑规则,知识图形,常识,文本证据等。第二,这种系统使用不同的推理算法来操纵有关解决问题的可用知识。第三,这种系统对预测具有良好的可解释性。机器推理系统的发展经历了几个阶段。符号推理方法代表使用符号逻辑(例如,命题逻辑和一阶逻辑)的知识,并使用诸如真实表方法,推理规则方法,分辨率,转发链接和向后链接的算法来执行推断。主要缺陷是,此类方法无法处理数据中的不确定性。概率推理方法将概率与符号逻辑与统一模型相结合。这些方法可以处理不确定性,但是在搜索大型离散符号空间时遭受组合爆炸。随着深度学习的快速发展,神经推理方法吸引了很多关注。神经符号推理方法代表作为向量或张量表示的知识符号(例如实体,关系,逻辑功能,逻辑功能和公式),并且允许模型有效地执行端到端学习,因为所有组件都很有区分。神经证据推理方法允许模型与环境进行通信,以获得推理的证据。由于这种模型假设推理层不需要逻辑,因此结构化和非结构化数据都可以用作知识。此外,由于与环境的相互作用可以多次进行,因此这种方法擅长解决连续决策问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号