首页> 外文会议>Symposium on Advanced Materials and Processes for Gas Turbines >ADVANCED SOLIDIFICATION PROCESSING OF AN INDUSTRIAL GAS TURBINE ENGINE COMPONENT
【24h】

ADVANCED SOLIDIFICATION PROCESSING OF AN INDUSTRIAL GAS TURBINE ENGINE COMPONENT

机译:高级凝固处理工业燃气轮机元件

获取原文

摘要

The purpose of the Advanced Turbine Airfoil Manufacturing Technology Program is to develop single crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Higher thermal gradients produce microstructural refinement and a reduction in grain defects and elemental segregation can be achieved. Reducing the difference in the maximum and minimum thermal gradients assists in maintaining a planar unidirectional solidification front for improved crystal quality. Advanced VIM casting techniques were applied to Solar Turbines Incorporated's Titan 130 First Stage High Pressure Turbine Blade under the ATS program. The advanced VIM techniques demonstrated an increase in maximum thermal gradients of 62% in the airfoil and 92% in the root over the conventional process. Microstructural refinements were obtained and benefited the homogenization behavior during solution heat treatment. Partitioning of heavy, slow diffusing elements, such as rhenium, tungsten, and tantalum, after heat treatment were significantly reduced in the airfoil and root sections of the blade. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.
机译:先进的涡轮机翼型制造技术计划的目的是开发单晶和定向凝固的铸造技术,以利用先进的涡轮机系统(ATS)工业和公用事业燃气轮机发动机。重点是在定义和实施先进的真空感应熔融(Vim)炉增强上,该熔炉增强能够在凝固过程中提供精确控制模具温度。重点是增加热梯度的总大小,同时最小化凝固过程中产生的最大和最小梯度的差异。较高的热梯度产生微观结构改进,可以实现晶粒缺陷和元素偏析的降低。降低最大和最小热梯度的差异有助于保持平面的单向凝固前面,以改善晶体质量。应用高级Vim铸造技术应用于太阳能涡轮机的泰坦130第一阶段高压涡轮叶片在ATS程序下。先进的Vim技术证明了翼型中的最大热梯度为62%的增加,常规过程中的根源中的92%。获得微观结构改进并使溶液热处理期间均质化行为受益。分区重的,慢扩散元件,例如铼,钨和钽,热处理后的叶片的翼面和根切片显著降低。将提出先进的Vim铸造过程与传统的Bridgeman铸造过程的比较,因为它涉及凝固过程中的热梯度,微观结构,元素分配表征和溶液热处理反应所涉及的热梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号