首页> 外文会议>ASME Turbo Expo >APPLICATION OF SCALAR DISSIPATION RATE MODEL TO SIEMENS DLE COMBUSTORS
【24h】

APPLICATION OF SCALAR DISSIPATION RATE MODEL TO SIEMENS DLE COMBUSTORS

机译:标量耗散速率模型在西门子DLE燃烧器中的应用

获取原文

摘要

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame.
机译:西门子工业涡轮机械,林肯,干低排放燃烧系统的标准设计过程采用了具有有限速率化学的涡流耗散模型,用于反应计算流体动力学模拟。该模型的主要缺点一直是过度预测的温度和缺乏物种数据限制了模型的适用性。最近基于轰炸机型假设,最近开发了作为标量耗散模型的新颖燃烧模型。以前采用炸弹哲学与替代封闭模型的尝试失败,预测了不文体现象。标量耗散速率模型(SDRM)是从对标量耗散率的物理理解制定的,这表示在与维持燃烧相关的尺度的鳞片中的冷热流体混合速率,并使用直接数值模拟数据和实验测量验证。本文报告了SDRM对SITL DLE燃烧系统的第一个工业应用。以前的应用已经考虑了理想的预混合实验室规模的火焰。工业应用在几何形状,未混合和操作压力的复杂性中显着不同。使用其内置命令语言将该模型实现为ANSYS-CFX。使用比例自适应仿真湍流模型来瞬时运行模拟,该模型在大涡模拟和非定常雷诺之间切换使用混合函数平均Navier Stokes。在实际操作条件下应用于实际工业几何体之前,该模型在研究SITL DLE燃烧系统中验证。该系统由SGT-100燃烧器组成,具有玻璃方形封口燃烧器,可提供详细的诊断。本文显示了SDRM对时间平均温度和测量误差速度的成功验证。成功的验证在相关的完全负载条件下允许将SDRM应用于SGT-100双轴。由于实际几何体中测量的复杂性,有限的验证数据可用。与EDM / FRC模型相比,表面温度和燃烧器出口温度分布的比较显示了改进。此外,没有预测不良现象。本文介绍了SDRM对工业燃烧系统的成功应用。该模型显示了先前使用的EDM / FRC模型的温度预测的显着改进。这在燃烧CFD的未来应用对于理解硬件机械完整性,燃烧排放和火焰动态的应用中,这是重要的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号