首页> 外文会议>ASME turbo expo >APPLICATION OF SCALAR DISSIPATION RATE MODEL TO SIEMENS DLE COMBUSTORS
【24h】

APPLICATION OF SCALAR DISSIPATION RATE MODEL TO SIEMENS DLE COMBUSTORS

机译:标量耗散率模型在西门子DLE燃烧器中的应用

获取原文

摘要

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model.A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements.This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function.The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors.The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore,no unphysical phenomena were predicted.This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame.
机译:西门子工业涡轮机公司(林肯)的干式低排放燃烧系统的标准设计过程采用了具有有限速率化学性质的涡流消散模型来进行计算流体动力学模拟的反应。该模型的主要缺点是温度的过高预测和缺乏物种数据限制了该模型的适用性。最近基于小火焰类型的假设,开发了一种新型的燃烧模型,称为标量耗散率模型。先前尝试采用小火焰原理和其他封闭模型的尝试以预测非物理现象而失败。标量耗散率模型(SDRM)是根据对标量耗散率的物理理解而开发的,它表示热流体和冷流体在与维持燃烧相关的尺度下在火焰中的混合速率,并使用直接数值模拟数据和实验测量进行了验证。本文报告了SDRM在SITL DLE燃烧系统中的首次工业应用。先前的应用已经考虑了理想的预混实验室规模的火焰。工业应用在几何形状的复杂性,非混合性和工作压力方面有很大的不同。该模型使用其内置的命令语言实现到ANSYS-CFX中。使用比例自适应湍流模型进行瞬时仿真,该模型使用混合函数在大涡流仿真和非稳态雷诺平均Navier斯托克斯之间进行切换,并在SITL DLE燃烧系统中进行了验证,然后将该模型应用于实际的实际工业几何结构。运行条件。该系统由SGT-100燃烧器和一个方形的玻璃燃烧器组成,可以进行详细的诊断。本文展示了SDRM针对时间平均温度和速度在测量误差范围内的成功验证,通过成功验证,SDRM可在相关的满负荷条件下应用于SGT-100双轴。由于实际几何形状中的测量复杂性,有限的验证数据可用。与EDM / FRC模型相比,表面温度和燃烧室出口温度曲线的比较显示出了改进。此外,没有预测到非物理现象。本文介绍了SDRM在工业燃烧系统中的成功应用。与先前使用的EDM / FRC模型相比,该模型在温度预测方面显示出显着改善。这对于燃烧CFD的未来应用具有重要意义,对于理解硬件机械完整性,燃烧排放物和火焰动力学非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号