首页> 外文会议>ASME Turbo Expo >Detached Eddy Simulation of Unsteady Stall Flows of a Full Annulus Transonic Rotor
【24h】

Detached Eddy Simulation of Unsteady Stall Flows of a Full Annulus Transonic Rotor

机译:完全环跨音转子的非稳态档芯片的独立涡流模拟

获取原文

摘要

This paper uses the advanced Delayed-Detached Eddy Simulation (DDES) of turbulence to simulate rotating stall inception of NASA Rotor 67. The rotor is a low-aspect-ratio transonic axial-flow fan with a tip speed of 429m/s and a pressure ratio of 1.63. A full annulus simulation was employed with the time accurate compressible Navier-Stokes code in order to accurately capture the the formation of long-length disturbance and a short-length inception(spike). The validation for all numerical methods used in this study was accomplished by the comparisons of the CFD solutions with the test data in advance of unsteady simulations. Self-induced rotating stall development is simulated holding the same back pressure at the near stall experiment without any throttling. Spike type rotating stall occurs and rotates at roughly 50% of rotor speed counter to the rotation. After spike onset, rotating stall fully develops approximately within 2 rotor revolutions. Two distinct characteristics that can advance the mechanism of spike type rotating stall are observed. First, the passage shock is fully detached from rotor and decays during the spike inception. Consequently the shifted sonic line at the upstream of rotor allows stalling flow to propagate to the neighboring passage. Second, the trailing edge back flow contributes to the build up of a fully developed stall cell by pushing tip clearance flow toward blade leading edge and inducing tip spillage flow. Tip vortex originated from the leading edge dies out during spike inception as the swirl angle of incoming tip flow decreases, while in the unstalled passages it develops without breakdown. DDES challenge for the complete blade row reflects well the sequence of rotating stall and its unsteady behavior.
机译:本文采用先进的延迟分离涡流仿真(DDES)湍流来模拟NASA转子67的旋转失速初始化。转子是低纵横比跨音频轴流式风扇,尖端速度为429m / s,压力比例为1.63。使用完整的环形仿真与时间准确的可压缩Navier-Stokes代码,以便准确地捕获长度扰动的形成和短距离截头(尖峰)。本研究中使用的所有数值方法的验证是通过在不稳定模拟前进的CFD解决方案的CFD解决方案的比较来实现的。自诱导的旋转停滞开发被模拟在近代实验中保持相同的背压,而无任何节流。旋转旋转旋转旋转旋转旋转旋转旋转旋转旋转速度旋转,旋转速度大约50%。在尖峰发起之后,旋转摊位完全在2转子转旋转内完全发展。观察到可以提高尖峰型旋转失速机理的两个不同的特性。首先,通过转子完全脱离通道,并且在尖峰初始化期间衰变。因此,转子上游的移动声线允许停滞流动传播到相邻通道。其次,通过将尖端间隙流向刀片前缘和诱导尖端溢出流动推动尖端间隙,后缘背面流动有助于完全开发的失速电池的构建。由于传入尖端流量的旋转角度减小,尖端涡旋起源于前沿的前缘模具消失,而在未经击穿的情况下,在未置换的段落中,它在未置换的段落中。完整刀片行的DDES挑战反映了旋转失速序列及其不稳定行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号