首页> 外文会议>AIChE Annual Meeting >Sinter-resistant metal nanoparticles encapsulated by zeolite nanoshell
【24h】

Sinter-resistant metal nanoparticles encapsulated by zeolite nanoshell

机译:烧结金属纳米粒子包封沸石纳米孔

获取原文
获取外文期刊封面目录资料

摘要

Nanocatalysts have distinct activity and selectivity, which can be achieved by controlling their size, shape[1], surface composition, and electronic structure. In particular, gold nanoparticle possesses unique catalytic properties when they are supported on metal oxides/carbon and are utilized for various reactions such as CO oxidation[2], acetylene hydrochlorination[3], hydrogenation[4], selective oxidation[5] and epoxidation[6]. However, they may suffer from sintering and subsequent loss in activity due to harsh reactions conditions (e.g. high temperature, pressure, solvents etc.). This can be circumvented by encapsulating the gold nanoparticles with different shell materials such as silica, mesoporous carbon, and polymer shell. Although such approaches decrease sintering, the protective shell does not augment the product selectivity of the composite “nanoparticle core”-“protective shell” catalysts. Towards this goal, the present work explores and demonstrates the feasibility of structured encapsulants with well-defined pores to suppress sintering of encapsulated nanoparticles. We propose a general hydrothermal based synthetic strategy to assemble bifunctional catalysts in which a single gold nanoparticle is encapulated by a variety of zeolites-nanoshell (e.g. MCM-22 and ZSM-5). Gold nanoparticles were synthesized by reduction of chloroauric acid by sodium citrate[7]. These nanoparticles were coated with silica (denoted as Au@SiO2) followed by transformation into Au@MCM-22 and Au@ZSM-5 by modified hydrothermal synthesis, by varying amount of Si/Al. The zeolite nanoshells are of uniform shell thickness, morphology, possess high thermal stability and play the dual role of stabilizing the nanoparticles against sintering and their distinct pore structure can facilitate shape selective catalysis.
机译:纳米催化剂具有明显的活性和选择性,可以通过控制其尺寸,形状[1],表面组成和电子结构来实现。特别地,当它们负载金属氧化物/碳时,金纳米颗粒具有独特的催化性能,并用于各种反应,例如CO氧化[2],乙炔氢氯化[3],氢化[4],选择性氧化[5]和环氧化[6]。然而,由于苛刻的反应条件(例如,高温,压力,溶剂等),它们可能患有烧结和随后的活动损失。这可以通过用不同的壳材料封装金纳米粒子,例如二氧化硅,中孔碳和聚合物壳来避免。虽然这种方法减少了烧结,但保护壳不会增加复合“纳米颗粒核心” - “保护壳”催化剂的产品选择性。对此目标来说,目前的工作探讨并展示了结构化密封剂具有明确定义的孔的可行性,以抑制封装的纳米颗粒的烧结。我们提出了一种基于多种水热基的合成策略,以组装双官能催化剂,其中单个金纳米颗粒由各种沸石 - 纳米壳(例如MCM-22和ZSM-5)包封。通过柠檬酸钠还原通过氯硼酸还原氯生酸来合成金纳米颗粒[7]。将这些纳米颗粒涂有二氧化硅(表示为SiO 2),然后通过改性的水热合成通过改变量的Si / Al转化为Au @ MCM-22和Au @ ZSM-5。沸石纳米壳具有均匀的壳体厚度,形态,具有高热稳定性,并发挥稳定纳米颗粒的双重作用,并且它们的不同孔结构可以促进形状选择性催化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号