首页> 外文会议>Berechnung und Simulation im Fahrzeugbau >Predictive Crash Simulation Using Adaptive Finite Methods
【24h】

Predictive Crash Simulation Using Adaptive Finite Methods

机译:使用自适应有限方法预测崩溃仿真

获取原文

摘要

An appropriate description for modeling the post-failure behavior of material is often crucial when modeling impact problems involving large deformations and material failure. In [1], a coupling method for integrating a meshfree particle method in a mesh-based hydrocode has been developed. The procedure allows for an adaptive coupling in the sense that, at the beginning of a computation, an entire structure is discretized homogeneously using standard Finite Elements. As large deformations occur, the discretization is modified in the affected areas, i. e., elements are converted into particles. The particle description is based on a meshfree particle method for continua, in fact a further development of the well-known Method of Smoothed Particle Hydrodynamics (SPH) is employed. This procedure proves very useful for modeling large plastic flows in impact problems. However, if fragmentation occurs, a continuum description has a number of restrictions, requires very fine resolutions, and gets computationally expensive in 3D. Therefore another discretization transition is used: a transition from particles representing continua to particles representing discontinuous media ("discrete particles"). The latter have similarities to the so-called Discrete Element Method. The paper describes the basic features and differences between the continuous and discontinuous meshfree particle methods. Further on, it shows how the transition between discretizations is implemented in the Institutes in-house code SOPHIA. Advantages and problems of the new method are being addressed. Application of the method to dynamic material failure is shown for typical material tests used in order to experimentally characterize material behavior under impact conditions.
机译:在建模涉及大变形和材料故障的影响问题时,用于建模材料的失败后行为的适当描述通常是至关重要的。在[1]中,已经开发了一种在基于网状的硬件中积分网的偶极颗粒方法的耦合方法。该过程允许在义的意义上进行自适应耦合,即在计算开始时,使用标准有限元分离地离散地分散整个结构。由于发生大变形,在受影响的区域中修改了离散化,i。即,元素被转换成颗粒。颗粒描述基于用于连续的网外颗粒方法,实际上采用了公知的平滑颗粒流体动力学(SPH)的公知方法。该程序证明对于在影响问题中建模大型塑料流量非常有用。但是,如果发生碎片化,则连续内容具有许多限制,需要非常精细的分辨率,并且在3D中得到计算昂贵。因此,使用另一个离散化转变:从代表不连续介质的颗粒的粒子的转变为代表不连续介质的颗粒(“离散颗粒”)。后者与所谓的离散元素方法相似。本文介绍了连续和不连续网格普及颗粒方法之间的基本特征和差异。此外,它显示了在内部代码索菲亚的机构中实施了离散化之间的转换。正在解决新方法的优点和问题。将方法用于动态材料故障的应用显示用于在碰撞条件下通过实验表征材料行为的典型材料测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号