首页> 外文会议>Conference on active materials: Behavior and mechanics >Modern magnetostrictive materials-classical and non-classical alloys
【24h】

Modern magnetostrictive materials-classical and non-classical alloys

机译:现代磁致伸缩材料 - 古典和非古典合金

获取原文

摘要

Magnetostrictive materials have not changed greatly from their discovery by Joule in 1842 through the 1960's. Their saturation strains remained small and their magnetomechanical couplings were only moderate. The separation of the rare earth elements during World War II and the subsequence measurement of their magnetic properties, created the groundwork for the development of "giant" magnetostrictive materials during the 1960's. Magnetically anisotropic Tb and Dy became the generators of unprecedented classical magnetostrictions of nearly 1%. Coupling factors increased to ~0.8. During the same period, a remarkable 5-fold increase of magnetostriction (λ_(100)) of commonplace b.c.c. Fe with concentrations of Al near 18% was discovered. More recently, measurements in b.c.c. Fe-Ga alloys have shown a still greater enhancement of the magnetostriction, yielding strains of nearly 400 * 10~(-6) over the wide range in temperature from 4 K to far above room temperature. In the Fe alloys, as well as in the rate earth alloys, there is not known stress limit to the magnetostriction. Power output is limited by magnetic field generation and mechanical sample failure. Within the last few years, a new class of magnetostrictive materials, ferromagnetic shape memory alloys (FSMA's), have been introduced. These materials have huge magnetically induced strains (~5%). However, unlike the classical magnetostrictive alloys, these strains may be stress limited. While all the above materials have been introduced primarily for their high power electrical to mechanical energy conversion capability, they also function in the reciprocal mode, as magnetomechanical sensing materials.
机译:1842年,磁致伸缩材料在1842年通过焦耳的发现没有大大变化。他们的饱和菌株仍然很小,并且它们的磁机械偶联仅适中。第二次世界大战期间稀土元素的分离以及其磁性特性的随后测量,在1960年代期间创造了“巨型”磁致伸缩材料的发展的基础。磁性各向异性TB和Dy成为前所未有的经典磁致伸缩的发电机近1%。耦合因子增加到〜0.8。在同一时期,磁致伸缩(λ_(100))的显着5倍增加的常见前的B.C.C。发现了含有接近18%的含量的Fe。最近,B.C.C的测量。 Fe-Ga合金显示出磁致伸缩的仍然提高,在宽范围内从4k到远高于室温的温度范围内的近400×10〜(-6)的菌株。在Fe合金中,以及在速率接地合金中,对磁致伸缩没有已知的应力限制。功率输出受磁场产生的限制和机械样本故障。在过去的几年内,已经介绍了一类新的磁致伸缩材料,铁磁形状记忆合金(FSMA)。这些材料具有巨大的磁诱导菌株(〜5%)。然而,与经典磁致伸缩合金不同,这些菌株可能是压力限制。虽然所有上述材料主要用于其高功率电气到机械能转换能力,但它们也以互易模式运行,作为磁力机械传感材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号