首页> 外文会议>Workshop on Modeling and Simulation Verification and Validation >Model Validation Methodology: From Validation Experiments to Systems Level Application
【24h】

Model Validation Methodology: From Validation Experiments to Systems Level Application

机译:模型验证方法:从验证实验到系统级应用

获取原文

摘要

Our increased dependence on computer models leads to the natural question. How do we increase the rigor in validating models against experimental data? Models have traditionally been tested against experimental data through simple comparisons such as x-y plots, scatter plots, or contour plots. While such qualitative comparisons are appropriate for model building, the use of such comparisons for model validation naturally leads to the questions. When is the agreement between experimental measurements and model predictions sufficient, and how should we quantify this agreement? Unfortunately, defining rigorous metrics for such comparisons is difficult since there are uncertainties in the validation experiment measurements and in the model parameters. Because of these uncertainties, we expect there to be differences between experimental observations and model predictions, even for perfect models. In addition, when models predict multivariate data (time histories or spatial distributions for example), the differences between the experimental observations and model predictions can be highly correlated. Furthermore, we often measure one quantity from a validation experiment, but desire to predict another quantity for the target application of our model. Finally, complex multi physics models often require a suite of validation experiments to test the model over the range of parameters and physics addressed by the anticipated target application. Here we present an approach to the development of rigorous model validation methodology that accounts for measurement and model parameter uncertainty. Specifically, we present methodology, based on first order sensitivity analysis, to 1) evaluate whether the validation experiments "cover" the physics of the target application, 2) combine the validation data from a suite of experiments to best represent the decision variables for the target application, 3) evaluate the uncertainty associated with the combined data, and 4) define a validation metric based on this combination of data that accounts for uncertainty in the experimental measurements and the model parameters. We present examples of the methodology based on thermal diffusion.
机译:我们对计算机模型的增加依赖会导致自然问题。我们如何增加对实验数据的验证模型的严谨性?传统上通过诸如X-Y图,散点图或轮廓图之类的简单比较来测试模型对实验数据进行了测试。虽然这种定性比较适用于模型建筑,但使用这种比较进行模型验证自然会导致问题。实验测量和模型预测之间的协议何时足够,以及我们如何量化本协议?遗憾的是,为这种比较定义严格的度量是困难的,因为验证实验测量和模型参数存在不确定性。由于这些不确定性,我们希望实验观测和模型预测之间存在差异,即使是完美的模型。另外,当模型预测多变量数据(例如,时间历史或空间分布)时,实验观察结果与模型预测之间的差异可以高度相关。此外,我们经常从验证实验中测量一个数量,但希望预测目标应用程序的目标应用。最后,复杂的多物理模型通常需要一套验证实验,以测试模型在预期目标应用程序所解决的参数和物理范围内。在这里,我们提出了一种开发严格模型验证方法的方法,该方法考虑了测量和模型参数不确定性。具体地,我们提出了基于第一阶敏感性分析的方法,以1)评估验证实验的验证实验是“覆盖”目标应用程序的物理学,2)将验证数据从一套实验组合结合,以最佳地代表决策变量目标应用程序,3)评估与组合数据相关的不确定性,4)根据这种数据的组合定义验证度量,该数据组合占实验测量中的不确定性和模型参数。我们基于热扩散提出了方法的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号