首页> 外文会议>トライボロジー会議 >Ultra-accelerated quantum chemical molecular dynamics study on the calculation of viscosities of complex liquids
【24h】

Ultra-accelerated quantum chemical molecular dynamics study on the calculation of viscosities of complex liquids

机译:超加速量子化学分子动力学研究复合液体粘度计算

获取原文

摘要

Ionic liquids (or room temperature molten salts) constitute a new class of substances that are considered as potential substitutes to many traditional organic solvents in reaction and separation processes. Ionic liquids are expected to be 'green solvent' in many of chemical industry, such as synthetic chemistry and electrochemistry and tribological applications, due to their unique physical and chemical properties. Needless to say, the properties of ionic liquids are useful for lubricants. To design any process involving ionic liquids on an industrial scale, it is necessary to know a range of physical properties including viscosity and density. Viscosity is one of the important factors in the characterization of lubricant performance. Molecular simulations have proven useful in understanding the physical properties of a fluid and its structure and composition that produce the desired macroscopic properties. Hence, in order to establish a new screening method for designing and characterization of new lubricants with desired physical properties, we have developed a new computational chemistry approach for the viscosity prediction of lubricants that based on the "Falling-ball" principles using classical molecular dynamics method. Our new computational method was applied to simple organic liquids at room conditions and complex lubricants under extreme conditions. This method was recently applied to calculate the viscosities of the complex ionic liquids using ultra-accelerated quantum molecular dynamics simulations. However, in this study, the calculated viscosities for the three kinds of ionic liquids are improved and much better accuracy is obtained. Calculated viscosities showed very good agreement with experimentally reported values. Results of the viscosity calculations for simple organic liquids are also indicated to show our methodology to be an effective tool for evaluating viscosity of complex liquids.
机译:离子液体(或室温熔盐)构成了一种新的物质,被认为是在反应和分离过程中许多传统有机溶剂的潜在替代品。由于其独特的物理和化学性质,预计在许多化学工业(如合成化学和电化学和摩擦学应用)中,预计离子液体将是“绿色溶剂”。毋庸置疑,离子液体的性质可用于润滑剂。设计任何涉及产业规模的离子液体的方法,有必要了解一系列物理性质,包括粘度和密度。粘度是润滑剂性能表征的重要因素之一。分子模拟已证明在理解流体的物理性质及其结构和组合物的实际性质可用于产生所需的宏观性质。因此,为了建立具有所需物理性质的新润滑剂的设计和表征新的筛选方法,我们开发了一种新的计算化学化学方法,用于使用经典分子动力学的“坠落球”原理的润滑剂的粘度预测方法。我们的新计算方法在室内条件下对简单的有机液体应用于极端条件下的复杂润滑剂。最近应用该方法以使用超加速量子分子动力学模拟计算复合离子液体的粘度。然而,在该研究中,提高了三种离子液体的计算粘度,并且获得了更好的精度。计算的粘度与实验报告的价值观表现出非常好的协议。还表明了简单有机液体的粘度计算的结果,以表明我们的方法是评估复合液体粘度的有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号