首页> 外文会议>NATO advanced study conference on soliton-driven photonics >SPATIAL SOLITONS IN MODULATED MAGNETOOPTIC WAVEGUIDES
【24h】

SPATIAL SOLITONS IN MODULATED MAGNETOOPTIC WAVEGUIDES

机译:调制磁光波导的空间孤子

获取原文

摘要

This chapter addresses the combination of linear magnetooptics and intrinsic optical nonlinearity, to make nonlinear waveguide systems that permit solitary wave control and a possible new range of devices. Such applications are simple in concept ― as, indeed, are all schemes ever proposed for realistic optical switching ― yet they are within the currently available material technology. A discussion is presented of a magnetooptic configuration in a standard planar format. The latter is the building block of planar technology photonics because the objective is an all-optics 'chip-level' format that will paiticipate in, and control all-optical processing operations in the future. The way forward is to use spatial soliton beams in which the diffraction length is the operative length scale. The reason for this is that diffraction operates over only the order of mm and sc it fits the 'chip' design very well. Once solitons are created, controlling their dynamics becomes an important issue so magnetooptics is put forward here as a very attractive option. Building a planar structure upon a magnetooptic substrate leads to a number of possibilities, but for the moment, we choose TM waves, within what is called the transverse magnetooptic configuration. The new idea is to use a transversely varying magnetooptic parameter, created by deploying electrode structures. These electrode structures, will, in practice, be narrow strips of metal, which can be created in any desired pattern. Even the simplest of them gives an impressive degree of control over the soliton dynamics. An interesting example is presented to illustrate the capability of this area but added or buried, electrode structures will become a feature of the all-optical chip technology of the future. There is a lot of work to be done! It will give a real possibility of manipulating the solitons in any way that is desired. The realisation of this aspiration is assured by the availability of magnetooptic materials through the global technology that is driving the linear magnetooptic field.
机译:本章解决了线性磁光和内在光学非线性的组合,使允许孤立波控制和可能的新系列的非线性波导系统。此类应用程序简单概念 - 实际上,所有这些方案都是用于现实光学切换的所有方案 - 但它们都在当前可用的材料技术范围内。以标准平面格式介绍了磁光配置的讨论。后者是平面技术光子学的构建块,因为该目标是全光学的“芯片级”格式,它将在未来进行PAITICIPATED和控制全光学处理操作。前进的方式是使用衍射长度的空间孤子光束是操作长度尺度。这样做的原因是衍射仅通过MM和SC的顺序运行,它非常适合“芯片”设计。一旦创建了孤子,控制他们的动态就会成为一个重要问题,因此磁光化为这里作为一个非常有吸引力的选择。在磁光基板上建立平面结构导致许多可能性,但是对于当下,我们选择TM波,在所谓的横向磁光配置中。新思路是使用横向不同的磁光参数,通过部署电极结构而产生。在实践中,这些电极结构是窄条金属条,其可以以任何所需的图案产生。即使是最简单的它们也可以对孤子动态进行令人印象深刻的控制程度。提出了一个有趣的例子以说明该区域的能力,而是添加或埋地,电极结构将成为未来的全光芯片技术的特征。有很多工作要做!它将具有以任何需要的方式操纵孤子的真实可能性。通过驱动线性磁光场的全球技术,通过磁光材料的可用性来确保这种吸入的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号