首页> 外文会议>Corrosion Conference >REVISITING HYDROGEN IN STEEL, PART I: THEORETICAL ASPECTS OF CHARGING, STRESS CRACKING AND PERMEATION
【24h】

REVISITING HYDROGEN IN STEEL, PART I: THEORETICAL ASPECTS OF CHARGING, STRESS CRACKING AND PERMEATION

机译:重新拟接钢制氢,第一部分:充电,应力开裂和渗透的理论方面

获取原文

摘要

This article first of all summarizes recent changes in the understanding of hydrogen charging and hydrogen stress cracking (HSC) mechanisms: In a completely unexpected manner, hydrogen charging is found to coexist with significant degassing of the metal towards the corrosive medium. The surface reaction 2 H_(ads) ->H_2 21 -> thus extremely rapid, even in sour media. It is therefore in no way inhibited, contrary to former belief. Charging probably involves a cathodic reaction in which a proton is transferred directly from the electrolyte into the metal, without requiring the intermediate formation of an adsorbed hydrogen atom. Charging and degassing can therefore coexist. Charging is thus itself a faradaic process and is consequently extremely powerful. Damage due to so-called "internal" hydrogen (blistering, hydrogen-induced cracking, stepwise cracking) always involves bulk metallurgical processes related to the concentration of dissolved H. In contrast, damage due to so-called "external" hydrogen (HSC, SSC) involves surface processes related only to the charging rate. The forced injection of protons locally expands the crystal lattice, thus inducing high surface stresses that add to the working stresses and cause surface crack initiation. Finally, the coexistence of charging and degassing explains why the severity of the medium varies with P_(H2S) in a different way depending on whether "external" or "internal" hydrogen is concerned. The consequences on permeation measurements and their interpretation are then discussed. In particular, the coexistence of charging and degassing radically modifies permeation conditions, with the need to separate thick membranes, for which the concentration c_0 beneath the entry face is constant and the diffusion flux inversely proportional to the diffusion distance d, and thin membranes, for which the diffusion flux is constant and the concentration c beneath the entry face proportional to d. All these theoretical predictions have the advantage that they can be verified experimentally, and Part II of the present study shows that this is indeed the case.
机译:本文首先总结了的充氢和氢应力开裂(HSC)机制的认识最近的变化:在一个完全意想不到的方式,充氢被发现具有朝向腐蚀介质的金属的显著脱气共存。表面反应2 H_(广告) - > 21 H_2 - >因而非常迅速,甚至在酸介质。因此,它是没有办法抑制,相反,前者的信念。大概充电涉及其中质子从电解质直接传递到金属,而不需要吸附的氢原子的中间形成一个阴极反应。充电和脱气因此可以共存。充电因此本身就是一个法拉第过程,因此是非常强大的。损坏由于所谓的“内部”氢(起泡,氢致开裂,逐步裂化)有关的溶解H.相反的浓度总是涉及散装冶金工艺,由于所谓的“外部”氢(HSC损伤, SSC)涉及仅与充电率表面处理。质子的强制注射局部扩大晶格,从而诱导高表面应力,这增加了工作应力和引起表面裂纹萌生。最后,充电和脱气共存解释了为什么介质的严重性与P_(H2S)在根据“外部”或“内部”氢是否涉及不同的方式而变化。然后渗透测量及其解释的后果进行了讨论。特别是,充电和脱气根本修改共存的渗透条件下,用需要分离厚的膜,为此,进入面下方的浓度C_0是恒定的,并且扩散通量反比于扩散距离d,而薄膜,用于该扩散通量是恒定的并且进入面成正比d下方的浓度c。所有这些理论预测的优势在于它们可以被实验验证,和目前的研究表明,这的确是这样的第二部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号