首页> 外文会议>European Corrosion Congress >Development of predictive model for sulfur species thermal dissociation and related corrosivity in condensate feedstock
【24h】

Development of predictive model for sulfur species thermal dissociation and related corrosivity in condensate feedstock

机译:硫型物种热解离的预测模型及相关腐蚀性凝结原料的发展

获取原文

摘要

High temperature sulfidic corrosion in refinery process streams depends on the presence and concentration of specific sulfur species. These species thermally dissociate (break down) when heated, producing hydrogen sulfide (H2S). Each sulfur species decomposes at a particular temperature which is thought to be its boiling point. The evolved H_2S reacts with a metal surface at high temperatures (250 to 350°C), forming metal sulfide, and therefore compromising pressure containment wall thickness and ultimately leading to release of hydrocarbons with serious consequences. Several incidents of high corrosion rates and premature failures of refinery process equipment and pipes have been reported in the past [1,3]. Material selection for these facilities was based on prediction tools using total sulfur and not considering the presence of specific sulfur species known as active sulfur. Some of these species dissociate at temperatures as low as 60°C, producing quantities of H_2S responsible for the metal wastage at high temperature. Concentrations of these sulfur species vary from one feedstock to another and have different dissociation temperature ranges. In the previous works by the authors [6,7], dissociation temperature profiles for several condensate and crude feedstock were generated. These profiles are important indicators for estimating the extent of corrosion, and predicting the affected process loop. However, to enable fast and accurate prediction of corrosivity of a particular feedstock, it is necessary to develop a model based on the kinetics and thermodynamic behaviour of sulfur species thermal decomposition. A pilot plant depicting the actual process units was used for data collection. The tested variables were temperature, pressure, liquid hourly space velocity (LHSV) and sweep gas flow rate. For each test condition, a feed and products mass balance was carried out. The extent of dissociation was evaluated using sulfur species material balance across the unit. Monitoring of H_2S in the produced gas was achieved using three complementary methods, namely on line detector, on line GC, and intermittent GC-SCD techniques. This paper will discuss the experimental setup to facilitate kinetic data collection, the significance of the selected test parameters, results obtained towards the development of the predictive tool, and will relate the data to previous work on the dissociation characterization of feedstock carried out by the authors.
机译:炼油厂流程中的高温硫酸腐蚀取决于特定硫种类的存在和浓度。这些物种在加热时热解离(分解),产生硫化氢(H 2 S)。每种硫种类在特定温度下分解,被认为是其沸点的特定温度。进化的H_2S与高温(250至350℃)的金属表面反应,形成金属硫化物,因此损害压力容纳壁厚度,最终导致碳氢化合物具有严重后果。过去[1,3]报道了几次高腐蚀速率和炼油厂工艺设备和管道的过早故障。这些设施的材料选择是基于使用总硫的预测工具,而不是考虑存在已知为活性硫的特定硫物质。其中一些物种在低至60℃的温度下解离,生产负责金属浪费的H_2在高温下的量。这些硫物质的浓度从一个原料到另一个原料变化并具有不同的解离温度范围。在先前作者的作品中[6,7],产生用于几种冷凝物和粗原料的解离温度曲线。这些简档是估算腐蚀程度的重要指标,并预测受影响的过程循环。然而,为了能够快速准确地预测特定原料的腐蚀性,有必要基于硫种类热分解的动力学和热力学行为来开发一种模型。描绘实际过程单元的试验工厂用于数据收集。测试的变量是温度,压力,液小时空间速度(LHSV)和扫描气流速率。对于每个测试条件,进行饲料和产品质量平衡。在整个装置上使用硫种类物质平衡评估解离的程度。使用三种互补方法,即在线探测器,线GC和间歇GC-SCD技术,实现了产生的气体中的H_2S的监测。本文将讨论实验设置,以促进动力学数据收集,所选测试参数的重要性,从而实现了预测工具的发展的结果,并将数据与先前工作相关的数据对作者进行的原料的解离表征。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号