首页> 外文会议>Parallel computational fluid dynamics conference >Parallel Preconditioners for KKT Systems Arising in Optimal Control of Viscous Incompressible Flows
【24h】

Parallel Preconditioners for KKT Systems Arising in Optimal Control of Viscous Incompressible Flows

机译:用于粘性不可压缩流动的KKT系统的平行预处理器

获取原文

摘要

Recently, interest has increased in model-based optimal flow control of viscous fluids, that is, the determination of optimal values of parameters for systems governed by the fluid dynamics equations. For example, the objective could be minimizing drag on a solid body, and the controls might consist of velocities or tractions on some part of the boundary or of the shape of the boundary itself. Such problems are among the most computationally challenging optimization problems. The complexity stems from their being constrained by numerical approximations of the fluid equations, commonly the Navier-Stokes or the Euler equations. These constraints are highly nonlinear and can number in the millions for typical systems of industrial interest. The current state-of-the-art for solving such flow-constrained optimization problems is reduced sequential quadratic programming (RSQP) methods. General mathematical analysis of these methods as well as CFD-related research have appeared. In addition, parallel implementations of RSQP methods exhibiting high parallel efficiency and good scalability have been developed. These methods essentially project the optimization problem onto the space of control variables (thereby eliminating the flow variables), and then solve the resulting reduced system using a quasi-Newton method. The advantage of such an approach is that only two linearized flow problems need to be solved at each iteration. However, the convergence of quasi-Newton based RSQP methods (QN-RSQP) deteriorates as the number of control variables increases, rendering large-scale problems intractable.
机译:最近,兴趣在粘性流体的模型的最佳流量控制中增加了兴趣,即,通过流体动力学方程治理的系统的最佳值的确定。例如,目标可以在固体上最小化拖动,并且控制可能包括边界的某些部分或边界本身的形状的速度或阶段。这些问题是最具计算上挑战性的优化问题。复杂性源于它们受到流体方程的数值近似的限制,通常是Navier-Stokes或欧拉方程。这些约束是高度非线性的,并且可以在数百万内部数量进行典型的工业利益系统。用于解决这种流量受限优化问题的当前最先进的序贯二次编程(RSQP)方法减少。出现了这些方法的一般数学分析以及相关的CFD相关研究。此外,已经开发出具有高平行效率和良好可扩展性的RSQP方法的并行实现。这些方法基本上将优化问题项目投影到控制变量的空间上(从而消除流量变量),然后使用Quasi-Newton方法解决所得到的减少系统。这种方法的优点是在每次迭代中只需要解决两个线性化的流动问题。但是,随着控制变量的数量增加,拟序列的基于Quas-Newton的RSQP方法(QN-RSQP)的收敛性,渲染大规模的问题难以解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号