首页> 外文会议>NATO Advanced Study Institute on chemistry and radiation changes in the ozone layer >TROPOSPHERIC AEROSOL FORMATION: PROCESSES, OBSERVATIONS AND SIMULATIONS
【24h】

TROPOSPHERIC AEROSOL FORMATION: PROCESSES, OBSERVATIONS AND SIMULATIONS

机译:对流层气溶胶形成:过程,观察和模拟

获取原文

摘要

Observations interpreted using new modeling techniques suggest that under typical atmospheric conditions, the formation of new particles is likely to be enhanced by the presence of natural ionization. This ion-mediated nucleation (IMN) process may be important in environments where nanometer-sized particles are otherwise marginally stable, and homogeneous nucleation is highly improbable. Owing to the presence of charge, IMN is capable of explaining measurements of enhanced particle growth rates (by a factor as large as 10, linked to species such as H_2SO_4, H_2O and NH_3) up to measurable sizes ~3 nm. The discussion presented here demonstrates that IMN theory is consistent with a range of field data describing the behavior of ultrafine aerosols. This mechanism also explains the detection of new particles under conditions for which homogeneous nucleation is seemingly precluded. It follows that an ion-based theory is likely to improve our ability to model particle formation under atmospheric conditions. The number of nucleated particles that contributes to the background population of cloud condensation nuclei (CCN) depends on the ionization rate, initial ion abundance, and precursor vapor concentrations. The influence of the ionization rate on CCN production may have a bearing on the correlation noted between variations in global cloud coverage (up to 3-4%) and galactic cosmic ray fluxes (up to 20% over the 11-year solar cycle). Air ionization rates are also affected by surface radioactivity over land, and excess free charge created by lighting activity and corona discharge within clouds. Even bursting bubbles and droplet impacts on surfaces are known to generate electrically charged micro-particles. These additional mechanisms might also initiate IMN, leading to local increases in the abundances of ultrafine aerosols and CCN. The aerosol nucleation rates associated with IMN are normally limited by the background ionization rate, which varies roughly from ~1-30 ion-pairs/cm~3s in the troposphere. This property of IMN is consistent with the average maximum particle production rates of ≤0.5-10/cm~3s estimated from a number of in situ observations. However, at higher precursor vapor supersaturations, direct activation of pre-existing ions could produce bursts of aerosols numbering more than 100,000/cm~3. Thus, the studies cited above point to three distinct phases of aerosol nucleation, corresponding to an increasing state of supersaturation of air: Phase 1. Low precursor supersaturation: leads to "slow" nucleation at average rates ≤0.1-10~(-2)/cm~3s, connected with the formation of stable neutral clusters following the recombination of large ambient ions; generates ultrafine aerosol densities of up to 100's-1000's/cm~3. Phase 2. Intermediate precursor supersaturation: causes selective ion activation and growth in an environment of charged and neutral molecular clusters; generates ultrafine particle concentrations of 1000's-10,000' s/cm~3. Phase 3. High precursor supersaturation: triggers homogeneous nucleation, either binary or ternary, possibly in regions of high humidity; creates ultrafine particle abundances reaching 100,000's/cm~3. Measurements of the air mobility spectrum seem to add considerable information toward an understanding of aerosol formation and growth at sizes below a few nanometers. Hence, to characterize nucleation mechanisms more precisely, such data should be included in experimental designs. Lagrangian aerosol sampling techniques would also be favored, since this approach can yield data on microphysical evolution without the complicating effects of a changing air mass. Further laboratory studies should be undertaken to quantify the thermodynamic data that define ion properties under tropospheric conditions, at ion sizes and compositions relevant to aerosol nucleation. The sparseness of such data imposes a limitation on our ability to quantify ion-based nucleation mechanisms. The authors acknowledge support f
机译:使用新型建模技术解释的观察结果表明,在典型的大气条件下,通过天然电离的存在,可能会增强新颗粒的形成。该离子介导的成核(IMN)方法在纳米尺寸颗粒以否则稳定稳定的环境中可能是重要的,并且均匀成核非常不可能。由于充电的存在,IMN能够解释增强颗粒生长速率的测量(其大约10的因子,与物种如H_2SO_4,H_2O和NH_3连接)至可测量的尺寸〜3nm。展示的讨论表明IMN理论与描述超细气溶胶行为的一系列现场数据一致。该机制还解释了在均匀核心似乎排除的条件下检测新颗粒。因此,离子的理论可能会改善我们在大气条件下模拟粒子形成的能力。有助于云缩核(CCN)的背景群的核颗粒的数量取决于电离率,初始离子丰度和前体蒸汽浓度。电离率对CCN产生的影响可能对全局云覆盖率(高达3-4%)和半乳液彩光通量(在11年太阳循环中最高20%)之间的相关性的相关性。空气电离率也受到陆地上表面放射性的影响,并且通过照明活动和云中的电晕放电产生的超出免费电荷。甚至已知甚至突出气泡和液滴对表面的影响是产生带电的微粒。这些额外的机制也可能发起IMN,导致局部增加超细气溶胶和CCN的丰富。与IMN相关的气溶胶成核率通常受到背景电离率的限制,这大致在对流层中的约1-30离子对/ cm〜3。 IMN的这种特性与≤0.5-10/ cm〜3s的平均最大粒子生产率一致,从许多原位观察结果估计。然而,在更高的前体蒸汽过度体内,预先活化的离子的直接激活可以产生装气溶胶的爆发,该气溶胶编号超过100,000 / cm〜3。因此,研究表明,对应于气溶胶成核的三个不同阶段,对应于空气过饱和状态的增加:相1.低前体过饱和:导致平均速率≤0.1-10〜(-2)的“慢”成核/ cm〜3s,随着大环境离子的重组后形成稳定的中性簇;产生高达100〜1000 / cm〜3的超细气溶胶密度。阶段2.中间体前体过饱和:在带电和中性分子簇的环境中引起选择性离子活化和生长;产生1000-10,000 s / cm〜3的超细颗粒浓度。阶段3.高前体过饱和:触发均匀成核,无论是二元核,也可能在高湿度的区域中;创造超细粒子丰度达到100,000's / cm〜3。空运频谱的测量似乎在几纳米以下的尺寸下,增加了对气溶胶形成和生长的相当性的信息。因此,为了更精确地表征成核机制,应该包括在实验设计中。拉格朗日气溶胶采样技术也将受到青睐,因为这种方法可以屈服于微小进化的数据,而无需改变空气质量的复杂效果。应进行进一步的实验室研究,以定量定义对流层条件下的离子性质的热力学数据,以离子尺寸和与气溶胶成核相关的组合物。这些数据的稀疏对我们量化基于离子的成核机制的能力施加了限制。作者承认支持f

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号