首页> 外文会议>Materials Research Society Symposium >Influence of Materials on the Performance Limits of Microactuators
【24h】

Influence of Materials on the Performance Limits of Microactuators

机译:材料对微致动器性能限制的影响

获取原文

摘要

The selection of actuators at the micro-scale requires an understanding of the performance limits of different actuation mechanisms governed by the optimal selection of materials. This paper presents the results of analyses for elastic bi-material actuators based on simple beam theory and lumped parameter thermal models. Comparisons are made among commonly employed actuation schemes (electro-thermal, piezoelectric and shape memory) at micro scales and promising candidate materials are identified. Polymeric films on Si subjected to electro-thermal heating are optimal candidates for high displacement, low frequency devices while ferroelectric thin films of Pb-based ceramics on Si/ DLC are optimal for high force, high frequency devices. The ability to achieve ~10 kHz at scales < 100μm make electro-thermal actuators competitive with piezoelectric actuators considering the low work/volume obtained in piezoelectric actuation (~10~(-8)J.m~(-2).mV~(-2)). Although shape memory alloy (SMA) actuators such as Ni-Ti on Si deliver larger work (~1 J.m~(-3)K~(-2)) than electro-thermal actuators at relatively low frequencies (~1 kHz), the critical scale associated with the cessation of the shape memory effect forms the bounding limit for the actuator design. The built-in compressive stress levels (~ 1GPa) in thin films of Si and DLC could be exploited for realizing a high performance actuator by electro-thermal buckling.
机译:在微尺度上选择致动器需要了解通过最佳选择的不同致动机制的性能限制。本文介绍了基于简单光束理论和集成参数热模型的弹性双材料执行器分析结果。在微尺度的常用的致动方案(电热,压电和形状存储器)中进行了比较,并且鉴定了有希望的候选材料。对电热加热进行电热加热的Si上的聚合物薄膜是高位刻度,低频装置的最佳候选,而Si / DLC的PB陶瓷的铁电薄膜是最佳的高力,高频装置。在秤<100μm处实现〜10 kHz的能力使电热致动器竞争压电执行器,考虑压电驱动的低工作/体积(〜10〜(-8)Jm〜(2).mv〜(-2 )))。虽然Si上的形状记忆合金(SMA)致动器如Ni-Ti,但在相对低频(〜1 kHz)的电热致动器中提供较大的工作(约1Jm〜(-3)k〜(2)),但是与形状记忆效果的停止相关的临界比例形成了执行器设计的边界限制。可以利用Si和DLC薄膜中的内置压缩应力水平(〜1GPa)来通过电热屈曲来实现高性能致动器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号