首页> 外文会议>Power-Gen International >COMBUSTION TURBINE PLANT POWER AUGMENTATION USING TURBINE INLET COOLING WITH THERMAL ENERGY STORAGE
【24h】

COMBUSTION TURBINE PLANT POWER AUGMENTATION USING TURBINE INLET COOLING WITH THERMAL ENERGY STORAGE

机译:燃烧汽轮机电力增强采用涡轮机入口冷却,热储能

获取原文

摘要

Combustion turbine (CT) power plants are well known to suffer from the adverse impact of high inlet air temperature, in reduced power output (as well as reduced efficiency). Unfortunately, the periods of highest ambient air temperatures (and greatest de-rating of performance) are generally precisely those times when power demand is highest and power output is most valuable. Accordingly, Turbine Inlet Cooling (TIC) technologies of various types are increasingly being employed to cool the inlet air, and thus enhance the power output (and improve the heat rate), of CT power plants. This is being accomplished in a wide range of applications, including: New CT plants and retrofits to existing CT plants; for industrial and aero-derivative CTs; Simple cycle and combined cycle CT plant configurations; Utility, independent power, and distributed generation (DG) plants; A range of plant capacities (from 1 MW to 1,000 MW); in locations around the world; A range of climates (from hot-arid to hot-humid and from hot year-round to seasonal). The leading approaches for TIC include two families of technologies: first, evaporative cooling methods (which have low initial cost but generally cool the inlet air only to near the ambient wet bulb temperature) and second, chiller-based systems (which have a higher initial cost but typically cool the inlet air to well below the I.S.O. conditions, e.g. to 4 to 10°C (40 to 50°F), and achieve a net power enhancement in hot weather of 20 to 30% or more). The use of Thermal Energy Storage (TES) in combination with chiller-based TIC systems often provides significant advantages and has been experiencing increased application around the world. Notably, TES can reduce the capacity of required chillers, reduce the net capital cost of the TIC system, and reduce parasitic power consumption (and thus maximize net power output) during peak demand periods. This paper presents a summary of data from a survey of CT plants employing TIC with TES. Data are presented for several dozen CTs using TIC-TES at over one dozen power plants in North America, Europe, The Middle East, and Southeast Asia. Statistics are presented to illustrate the locations, ages, types and sizes of plants, the TES technology types, the level of power enhancement, and trends over time. Conclusions are presented and discussed.
机译:燃烧涡轮机(CT)发电厂众所周知,在降低功率输出(以及降低效率)中,均已众所周知遭受高入口空气温度的不利影响(以及降低效率)。遗憾的是,最高环境空气温度(以及性能最大的额定值)通常是当量最高,功率输出最有价值时的那些时代。因此,各种类型的涡轮入口冷却(TIC)技术越来越多地用于冷却入口空气,从而提高CT发电厂的功率输出(提高热速率)。这是在各种应用中完成的,包括:新的CT植物和对现有CT植物的改造;适用于工业和航空衍生CTS;简单的循环和组合循环CT植物配置;公用事业,独立电力和分布式发电(DG)植物;一系列植物容量(从1 MW到1,000 MW);在世界各地;一系列的气候(从热干旱到热潮湿,从全年到季节性)。 TIC的主要方法包括两个技术家庭:第一,蒸发冷却方法(具有低初始成本,但通常将入口空气冷却到环境湿灯泡温度附近)和第二,冷却器为基础的系统(具有更高的初始的系统)成本但通常将入口空气冷却至低于ISO条件,例如4至10°C(40至50°F),并在20至30%或更多的炎热天气中实现净功率增强)。热能储存(TES)与基于冷却器的TIC系统的使用通常提供了显着的优势,并在全球范围内经历了增加的应用。值得注意的是,TES可以降低所需冷却器的容量,降低TIC系统的净资本成本,并在峰值需求期间降低寄生功耗(并因此最大化净功率输出)。本文介绍了采用TIC与TES的CT植物调查数据的摘要。使用TIC-TES在北美,欧洲,中东和东南亚和东南亚的十几个发电厂的TIC-TES呈现了数十名CTS的数据。提出统计数据以说明植物的地点,年龄,类型和大小,TES技术类型,电力增强水平以及随着时间的推移趋势。结论呈现和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号